Skip to main content

Advertisement

Resistivity structure of high-angle subduction zone in the southern Kyushu district, southwestern Japan

Article metrics

  • 286 Accesses

  • 11 Citations

Abstract

Magnetotelluric observations were carried out in the southern Kyushu district of southwestern Japan to investigate the characteristics of the electrical resistivity structure of a high-angle subduction zone. We constructed a 2-D resistivity model parallel to the subducting plate motion by using the inversion technique with the Akaike Bayesian Information Criterion (ABIC) smoothness constraint. The general features of the obtained resistivity structure are as follows: (1) a conductive block (below 1 Ω·m) is found beneath the volcanic zone and is widespread bilaterally below 40 km depth, (2) a resistive block (about 1000 Ω·m) distributes from 10 to 25 km depth in the forearc region and (3) a conductor (1 30 Ω·m) is embedded beneath the resistive block, which may correspond to the negative Bouguer gravity anomaly observed in this region. We propose the following for the high-angle subduction zone: A serpentinized block is generated in the lower crust of the forearc region and a partial melting and hydrothermal fluid are well developed beneath the volcanic front.

References

  1. Agarwal, A. K. and J. T. Weaver, Two-dimensional inversion of Papua New Guinea data using ‘least-blocked’ models, J. Geomag. Geoelectr., 49, 827–842, 1997.

  2. Agarwal, A. K., P. E. Poll, and J. T. Weaver, One- and two-dimensional inversion of magnetotelluric data in continental region, Phys. Earth Planet. Inter., 81, 155–176, 1993.

  3. Archie, G. E., The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. Am. Inst. Mining Eng., 146, 54–62, 1942.

  4. Bahr, K., Geological noise in magnetotelluric data: a classification of distortion types, Phys. Earth Planet. Inter., 66, 24–38, 1991.

  5. Bahr, K., Electrical anisotropy and conductivity distribution functions of fractal random networks and of the crust: the scale effect of connectivity, Geophys. J. Int., 130, 649–660, 1997.

  6. Chave, A. D., D. J. Thomson, and M. E. Ander, On the robust estimation of power spectra, coherences, and transfer functions, J. Geophys. Res., 92, 633–648, 1987.

  7. Davies, J. H. and D. J. Stevenson, Physical model of source region of subduction zone volcanics, J. Geophys. Res., 97, 2037–2070, 1992.

  8. Drury, M. J. and R. D. Hyndman, The electrical resistivity of oceanic basalt, J. Geophys. Res., 84, 4537–4545, 1979.

  9. Furukawa, Y., Magmatic processes under arcs and formation of the volcanic front, J. Geophys. Res., 98, 8309–8319, 1993.

  10. Gamble, T. D., W. M. Goubau, and J. Clarke, Magnetotellurics with a remote magnetic reference, Geophysics, 44, 53–68, 1979.

  11. Groom, R. W. and R. C. Bailey, Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion, J. Geophys. Res., 94, 1913–1925, 1989.

  12. Harte, B., R. H. Hunter, and P. D. Kinny, Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism, Phil. Trans. Soc. Lond., Series A, 342, 1–21, 1993.

  13. Hyndman, R. D., Dipping seismic reflectors, electrically conductive zones and trapped water in the crust over a subducting plate, J. Geophys. Res., 93, 13391–13405, 1988.

  14. Ishihara, K. and A. Yoshida, Configuration of the Philippine Sea slab and seismic activity in and around Kyushu, Zisin, 45, 45–51, 1992 (in Japanese with English abstract).

  15. Ishii, T., P. Robinson, H. Maekawa, and R. Fiske, Petrological studies of peridotites from diapiric serpentine seamounts in the Izu-Ogasawara-Marina forearc, in Proceedings of Ocean Drilling Program, Science Results, 125, 445–485, 1992.

  16. Jarrard, R. D., Relations among subduction parameters, Rev. Geophys., 24, 217–284, 1986.

  17. Jones, A. G., Static shift of magnetotelluric data and its removal in a sedimentary basin environment, Geophysics, 53, 967–978, 1988.

  18. Jones, A. G. and R. W. Groom, Strike-angle determination from the magnetotelluric impedance tensor in the presence of noise and local distortion: rotate at your peril!, Geophys. J. Int., 113, 524–534, 1993.

  19. Kagiyama, T., H. Utada, M. Uyeshima, F. Masutani, W. Kanda, Y. Tanaka, H. Masuda, H. Murakami, I. Shiozaki, M. Ichiki, T., Yukutake, T. Mogi, K. Amita, N. Oshiman, and M. Mishina, Resistivity structure of the central and the southeastern part of Kirishima volcanoes, Bull. Volcanol. Soc. Japan, 41, 215–225, 1996 (in Japanese with English abstract).

  20. Kakuta, T., H. Miyamachi, and A. Takagi, Intermediate earthquakes in a northern part of the Kyushu-Ryukyu arc, Zisin, 44, 63–74, 1991 (in Japanese with English abstract).

  21. Kanamori, H., Seismic and aseismic slip along subduction zones and their tectonic implications, in Island Arcs, Deep Sea Trenches and Back-Arc Basins, Maurice Ewing Series, vol. 1, pp. 162–174, AGU, 1977.

  22. Kobayashi, S., R. Shichi, S. Onizawa, J. Oikawa, and H. Watanabe, Gravity anomaly in southern Kyushu, Japan, in Proceedings of 1997 Conductivity Anomaly Symposium, 275–281, 1997 (in Japanese).

  23. Kurtz, R. D., J. M. DeLaurier, and J. C. Gupta, A magnetotelluric sounding across Vancouver Island detects the subducting Juan de Fuca plate, Nature, 321, 596–599, 1986.

  24. Nagamune, T. and H. Tashiro, Shape of the Wadati-Benioff zone beneath Kyushu, Japan, Zisin, 42, 13–19, 1989 (in Japanese with English abstract).

  25. Okada, N., Subsurface structure inferred from gravity anomaly and seismic velocity structure in eastern Kyushu, Graduation Thesis, Kyushu Univ., 33 pp., 1998 (in Japanese).

  26. Presnall, D. C., C. L. Simmons, and H. Porath, Changes in electrical conductivity of synthetic basalt during melting, J. Geophys. Res., 77, 5665–5672, 1972.

  27. Rai, C. S. and M. H. Manghnani, Electrical conductivity of ultramafic rocks to 1820 Kelvin, Phys. Earth Planet. Inter., 17, 6–13, 1978.

  28. Satoh, H., Y. Nishida, Y. Ogawa, Y. Sasai, M. Uyeshima, M. Takeda, and M. Kasahara, Crustal and uppermantle resistivity structure in the eastern part of the Hokkaido, Japan—Integration analysis of wideband-MT and network-MT data—, in Proceedings of 1999 Conductivity Anomaly Symposium, 38–46, 1999 (in Japanese).

  29. Schwarz, G. and D. Krüger, Resistivity cross section through the southern central Andes as inferred from magnetotelluric and geomagnetic deep soundings, J. Geophys. Res., 102, 11957–11978, 1997.

  30. Seno, T., S. Stein, and A. E. Gripp, A model for the motion of the Philippine sea plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98, 17941–17948, 1993.

  31. Shiozaki, I., The study of the electrical resistivity structures beneath the Chugoku and Shikoku district, Ph.D. Thesis, Kobe Univ., 204 pp., 1993 (in Japanese).

  32. Spiegelman, M. and D. McKenzie, Simple 2-D models for melt extraction at mid-ocean ridges and island arcs, Earth Planet. Sci. Lett., 83, 137–152, 1987.

  33. Stesky, R. M. and W. F. Brace, Electrical conductivity of serpentinized rocks to 6 kilobars, J. Geophys. Res., 78, 7614–7621, 1973.

  34. Tatsumi, Y., Migration of fluid phases and genesis of basalt magmas in subduction zones, J. Geophys. Res., 94, 4697–4707, 1989.

  35. Toh, H., Electrical conductivity structure of the Izu-Bonin arc revealed by seafloor electromagnetic observations, Ph.D. Thesis, Univ. of Tokyo, 215 pp., 1993.

  36. Toh, H. and M. Uyeshima, One-dimensional model study of the PNG dataset using site-independent Groom-Bailey decomposition, J. Geomag. Geoelectr., 49, 843–856, 1997.

  37. Toramaru, A. and N. Fujii, Connectivity of melt phase in a partially molten peridotite, J. Geophys. Res., 91, 9239–9252, 1986.

  38. Uchida, T., Smooth 2-D inversion for magnetotelluric data based on statistical criterion ABIC, J. Geomag. Geoelectr., 45, 841–858, 1993.

  39. Uchida, T. and Y. Ogawa, Development of FORTRAN code for two-dimensional magnetotelluric inversion with smoothness constraint, Open-File Report, Geological Survey of Japan, No. 205, 115 pp., 1993.

  40. Utada, H., A direct inversion method for two-dimensional modeling in the geomagnetic induction problem, Ph.D. Thesis, Univ. of Tokyo, 409 pp., 1987.

  41. Uyeda, S. and H. Kanamori, Back-arc opening and the mode of subduction, J. Geophys. Res., 84, 1049–1061, 1979.

  42. von Wagen, N. and H. S. Waff, Wetting of enstatite by basaltic melt at 1350°C and 1.0- to 2.5-GPa pressure, J. Geophys. Res., 93, 1153–1158, 1986.

  43. Wannamaker, P. E., J. R. Booker, A. G. Jones, A. D. Chave, J. H. Filloux, H. S. Waff, and L. K. Law, Resistivity cross section through the Juan de Fuca subduction system and its tectonic implications, J. Geophys. Res., 94, 14127–14144, 1989.

  44. Weaver, J. T. and A. K. Agarwal, Automatic 1-D inversion of magnetotelluric data by the method of modelling, Geophys. J. Int., 112, 115–123, 1993.

  45. Wessel, P. and W. H. F. Smith, New, improved version of Generic Mapping Tools released, EOS Trans. AGU, 79, 579, 1998.

  46. Yamazaki, F. and T. Ooida, Configuration of subducting Philippine Sea plate beneath the Chubu district, central Japan, Zisin, 38, 193–201, 1985 (in Japanese with English abstract).

Download references

Author information

Correspondence to Masahiro Ichiki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ichiki, M., Sumitomo, N. & Kagiyama, T. Resistivity structure of high-angle subduction zone in the southern Kyushu district, southwestern Japan. Earth Planet Sp 52, 539–548 (2000) doi:10.1186/BF03351661

Download citation

Keywords

  • Subduction Zone
  • Apparent Resistivity
  • Resistivity Model
  • Conductive Block
  • Resistivity Structure