Skip to main content

On the possibility of identifying heavy ion acceleration processes in the magnetotail of Mars

Abstract

The dependence of the energy of ions on their mass could be a useful tool for the identification of possible acceleration processes in the Martian plasma sheet. The study is based on a few cases when heavier ions and protons were registered simultaneously in the plasma sheet by the TAUS energy spectrometer, and on published data of the ASPERA instrument. The analysis of mass dependence of the ion energy in the plasma sheet suggests that frictional preacceleration of ions probably in the pole regions of the Martian magnetosphere can be responsible for not more than 40% of the energy gain of heavy ions in the plasma sheet, the cross-tail current sheet acceleration yields up to 70%, and from 30 to 70% of the heavy ion energy is provided by the acceleration due to magnetic field line stresses (and/or electric field aligned acceleration).

References

  1. Barabash, S. and O. Norberg, Indirect detection of the Martian helium corona, Geophys. Res. Lett., 21, 1547–1550, 1994.

    Article  Google Scholar 

  2. Barabash, S., E. Kallio, R. Lundin, and H. Koskinen, Measurements of the nonthermal helium escape from Mars, J. Geophys. Res., 100, 21307–21316, 1995.

    Article  Google Scholar 

  3. Dubinin, E., R. Lundin, O. Norberg, and N. Pissarenko, Ion acceleration in the Martian tail: Phobos observations, J. Geoghys. Res., 98, 3991–3997, 1993.

    Article  Google Scholar 

  4. Eastman, T. E., R. J. DeCoster, and L. A. Frank, Velocity distributions of ion beams in the plasma sheet boundary layer, in Ion Acceleration in the Magnetosphere and Ionosphere, Geophysical Monograph 38, AGU, Washington D.C., pp. 117–126, 1986.

    Chapter  Google Scholar 

  5. Haerendel, G., Tail exploration and tail formation with artificial plasma clouds, in Magnetotail Physics, edited by A. T. Y. Lui, Johns Hopkins University Press, Baltimore, Md., p. 337, 1987.

    Google Scholar 

  6. Ip, W.-H., Ion acceleration at the current sheet of the Martian magnetosphere, Geophys. Res. Lett., 19, 2095–2098, 1992.

    Article  Google Scholar 

  7. Kotova, G. A., M. I. Verigin, N. M. Shutte, A. P. Remizov, H. Rosenbauer, W. Riedler, K. Schwingnschuh, M. Delva, K. Szegö, and M. Tatrallyay, Planetary heavy ions in the magnetotail of Mars: Results of the TAUS and MAGMA experiments aboard Phobos, Adv. Space Res., 20, 173–176, 1997.

    Article  Google Scholar 

  8. Kotova, G. A., M. I. Verigin, A. P. Remizov, N. M. Shutte, H. Rosenbauer, S. Livi, W. Riedler, K. Schwingenchuh, M. Tatrallyay, K. Szegö, I. Apáthy, Heavy ions in the magnetosphere of Mars: Phobos 2/TAUS observations, Phys. & Chem. of the Earth (C), 25, 157–160, 2000.

    Google Scholar 

  9. Lichtenegger, H. and E. Dubinin, Model calculations of the planetary ion distribution in the Martian tail, Earth Planets Space, 50, 445–452, 1998.

    Article  Google Scholar 

  10. Lundin, R., A. Zakharov, R. Pellinen, H. Borg, B. Hultqvist, N. Pissarenko, E. M. Dubinin, S. W. Barabash, I. Liede, and H. Koskinen, First measurements of the ionospheric plasma escape from Mars, Nature, 341, 609–612, 1989.

    Article  Google Scholar 

  11. Norberg, O., S. Barabash, and R. Lundin, Observations of molecular ions in the Martian plasma environment, in Plasma Environments of Nonmagnetic Planets, COSPAR Colloquia Series, vol. 4, edited by T. Gombosi, p. 299, 1993.

  12. Rosenbauer, H., N. Shutte, I. Apáthy, A. Galeev, K. Gringauz, H. Grünwaldt, P. Hemmerich, K. Jockers, P. Király, G. Kotova, S. Livi, E. Marsch, A. Richter, W. Riedler, A. Remizov, R. Schwenn, K. Schwingenschuh, M. Steller, K. Szegö, M. Verigin, and M. Witte, Ions of Martian origin and plasma sheet in the Martian magnetosphere: initial results of the TAUS experiment, Nature, 341, 612–616, 1989.

    Article  Google Scholar 

  13. Shabanskiy, V. P., Phenomena in the Near Terrestrial Space, pp. 167–190, Nauka, Moscow, 1972 (in Russian).

    Google Scholar 

  14. Speiser, T. W., Particle trajectories in model current sheets, 1. Analitical solutions, J. Geophys. Res., 70, 4219–4226, 1965.

    Article  Google Scholar 

  15. Verigin, M. I., N. Shutte, A. Galeev, K. Gringauz, G. Kotova, A. Remizov, H. Rosenbauer, P. Hemmerich, S. Livi, I. Apáthy, K. Szegö, W. Riedler, K. Schwingenschuh, M. Steller, and Ye. G. Yeroshenko, Ions of planetary origin in the Martian magnetosphere (Phobos 2/TAUS experiment), Planet. Space Sci., 39, 131–137, 1991.

    Article  Google Scholar 

  16. Verigin, M., G. Kotova, N. Shutte, K. Szegö, M. Tatrallyay, I. Apathy, H. Rosenbauer, S. Livi, A. K. Richter, K. Schwingenschuh, T.-L. Zhang, J. Slavin, and J. Lemaire, Quantitative model of the Martian magnetopause shape and its variation with the solar wind ram pressure based on Phobos 2 observations, J. Geophys. Res., 102, 2147–2155, 1997.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. A. Kotova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kotova, G.A., Verigin, M.I., Remizov, A.P. et al. On the possibility of identifying heavy ion acceleration processes in the magnetotail of Mars. Earth Planet Sp 52, 561–565 (2000). https://doi.org/10.1186/BF03351663

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351663

Keywords

  • Current Sheet
  • Plasma Sheet
  • Acceleration Process
  • Relative Input
  • Plasma Sheet Boundary Layer