Skip to main content

Stability and evolution of the climate system of Mars

Abstract

We construct a one-dimensional energy balance climate model for Mars which incorporates greenhouse effect of CO2 and latitudinal heat transport so that we can express a latitudinal temperature gradient and change of an areal extent of a polar ice cap. By considering energy balance and CO2 budget among atmosphere, ice caps, and regolith, we investigate stability and evolution of the climate system of Mars. Under the present condition there are two stable steady state solutions of the system. One corresponds to a partial ice-covered solution (the present state), and the other is a warmer ice-free solution. Although this is also predicted by previous studies, these solutions are qualitatively different from them. When we assume CO2 as a dominant greenhouse gas for a warm and wet climate on the early Mars, we found that the total amount of CO2 within the whole system should have been larger than that at present and have decreased by some removal processes. We also found that a climate jump must have occurred during the evolution from the early warm climate to the present state, and ice caps on the early Mars might have extended to the mid-latitude. The atmospheric pressure may have decreased further after the climate jump.

References

  • Baker, V. R., R. G. Storm, V. C. Gulick, J. S. Kargel, G. Komatsu, and V. S. Kale, Ancient oceans, ice sheets and the hydrological cycle on Mars, Nature, 352, 589–594, 1991.

    Article  Google Scholar 

  • Baker, V. R., M. H. Carr, V. C. Gulick, C. R. Williams, and M. S. Marley, Channels and valley networks, in Mars, edited by H. H. Kieffer et al., pp. 493–522, Univ. of Ariz. Press, Tuscan, 1992.

  • Brain, D. A. and B. M. Jakosky, Atmospheric loss since the onset of the Martian geologic record: Combined role of impact erosion and sputtering, J. Geophys. Res., 103, 22,689–22,694, 1998.

    Article  Google Scholar 

  • Budyko, M. I., The effect of solar radiation variations on the climate of the earth, Tellus, 21, 611–619, 1969.

    Article  Google Scholar 

  • Fanale, F. P. and W. A. Cannon, Exchange of adsorbed H2O and CO2 between the regolith and atmosphere of Mars caused by changes in surface insolation, J. Geophys. Res., 24, 3397–3402, 1974.

    Article  Google Scholar 

  • Fanale, F. P., J. R. Salvail, W. B. Banerdt, and R. S. Saunders, Mars: the regolith-atmosphere-cap system and climate change, Icarus, 50, 381–407, 1982.

    Article  Google Scholar 

  • Forget, F. and R. T. Pierrehumbert, Warming early Mars with carbon dioxide clouds that scatter infrared radiation, Science, 278, 1273–1276, 1997.

    Article  Google Scholar 

  • Gierasch, P. J. and O. B. Toon, Atmospheric pressure variation and the climate of Mars, J. Geophys. Res., 30, 1502–1508, 1973.

    Google Scholar 

  • Goldspiel, J. M. and S. W. Squyres, Ancient aqueous sedimentation on Mars, Icarus, 89, 392–410, 1991.

    Article  Google Scholar 

  • Gough, D. O., Solar interior structure and luminosity variations, Solar Phys., 74, 21–34, 1981.

    Article  Google Scholar 

  • Gulick, V. C., D. Tyler, C. P. McKay, and R. M. Haberle, Episodic ocean-induced CO2 greenhouse on Mars: implications for fluvial valley formation, Icarus, 130, 68–86, 1997.

    Article  Google Scholar 

  • Haberle, R. M., Early Mars climate models, J. Geophys. Res., 103, 28,467–28,479, 1998.

    Article  Google Scholar 

  • Haberle, R. M., D. Tyler, C. P. McKay, and W. L. Davis, A model for the evolution of CO2 on Mars, Icarus, 109, 102–120, 1994.

    Article  Google Scholar 

  • Head, J. W., III, H. Hiesinger, M. A. Ivanov, M. A. Kreslavsky, S. Pratt, and B. J. Thomson, Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data, Science, 286, 2134–2137, 1999.

    Article  Google Scholar 

  • Hoffert, M. I., A. J. Callegari, C. T. Hsieh, and W. Ziegler, Liquid water on Mars: an energy balance climate model for CO2/H2O atmosphere, Icarus, 47, 112–129, 1981.

    Article  Google Scholar 

  • James, P. B., H. H. Kieffer, and D. A. Paige, The seasonal cycle of carbon dioxide on Mars, in Mars, edited by H. H. Kieffer et al., pp. 934–968, Univ. of Ariz. Press, Tuscan, 1992.

    Google Scholar 

  • Kasting, J. F., CO2 condensation and the climate of early Mars, Icarus, 94, 1–13, 1991.

    Article  Google Scholar 

  • Kasting, J. F., Warming early Earth and Mars, Science, 276, 1213–1215, 1997.

    Article  Google Scholar 

  • Kieffer, H. H. and A. P. Zent, Quasi-periodic climate change on Mars, in Mars, edited by H. H. Kieffer et al., pp. 1180–1218, Univ. of Ariz. Press, Tuscan, 1992.

    Google Scholar 

  • Kuhn, W. R. and S. K. Atreya, Ammonia photolysis and the greenhouse effect in the primordial of the Earth, Icarus, 37, 207–213, 1979.

    Article  Google Scholar 

  • Leighton, R. B. and B. C. Murray, Behavior of carbon dioxide and other volatiles on Mars, Science, 153, 136–144, 1966.

    Article  Google Scholar 

  • Luhmann, J. G., R. E. Johnson, and M. H. G. Zhang, Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions, Geophys. Res. Lett., 19, 2151–2154, 1992.

    Article  Google Scholar 

  • McKay, C. P., O. B. Toon, and J. F. Kasting, Making Mars habitable, Nature, 352, 489–496, 1991.

    Article  Google Scholar 

  • Mellon, M. T., Limits on the CO2 content of the Martian polar deposits, Icarus, 124, 268–279, 1996.

    Article  Google Scholar 

  • Melosh, H. J. and A. M. Vickery, Impact erosion of the primordial Martian atmosphere, Nature, 338, 487–489, 1989.

    Article  Google Scholar 

  • North, G. R., R. F. Cahalan, and J. A. Coakley, Jr., Energy balance climate models, Reviews of Geophysics and Space Physics, 19, 91–121, 1981.

    Article  Google Scholar 

  • Pollack, J. B., J. F. Kasting, S. M. Richardson, and K. Poliakoff, The case for a wet, warm climate on early Mars, Icarus, 71, 203–224, 1987.

    Article  Google Scholar 

  • Postawko, S. E. and W. R. Kuhn, Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate, Proc. Lunar Planet. Sci. Conf. 16th, Part 2, J. Geophys. Res., 91,suppl., D431–D438, 1986.

    Article  Google Scholar 

  • Sagan, C. and C. Chyba, The early faint Sun paradox: Organic shielding of ultraviolet-labile greenhouse gases, Science, 276, 1217–1221, 1997.

    Article  Google Scholar 

  • Sagan, C. and G. Mullen, Earth and Mars: Evolution of atmospheres and surface temperatures, Science, 177, 52–56, 1972.

    Article  Google Scholar 

  • Smith, D. E., M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, Topography of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter, Science, 279, 1686–1692, 1998.

    Article  Google Scholar 

  • Stone, P. H., A simplified radiative-dynamical model for the static stability of rotating atmospheres, J. Atmos. Sci., 29, 405–418, 1972.

    Article  Google Scholar 

  • Tanaka, H. M. and Y. Abe, A numerical study of the difference between the south and north CO2 polar caps on Mars, Proc. Lunar Planet. Sci., XXIV, 1–7, 1991.

    Google Scholar 

  • Toon, O. B., J. B. Pollack, W. Ward, J. A. Burns, and K. Bilski, The astronomical theory of climate change on Mars, Icarus, 44, 552–607, 1980.

    Article  Google Scholar 

  • Zent, A. P. and R. C. Quinn, Simultaneous adsorption of CO2 and H2O under Mars-like conditions and application to the evolution of the Martian climate, J. Geophys. Res., 100, 5341–5349, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takasumi Nakamura.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakamura, T., Tajika, E. Stability and evolution of the climate system of Mars. Earth Planet Sp 53, 851–859 (2001). https://doi.org/10.1186/BF03351682

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351682

Keywords

  • Steady State Solution
  • Greenhouse Effect
  • Martian Atmosphere
  • Latitudinal Temperature Gradient
  • Climate Jump