Skip to main content

Further constraints for the Plio-Pleistocene geomagnetic field strength: New results from the Los Tuxtlas volcanic field (Mexico)

Abstract

A rock-magnetic, paleomagnetic and paleointensity study was carried out on 13 Plio-Pleistocene volcanic flows from the Los Tuxtlas volcanic field (Trans Mexican Volcanic Belt) in order to obtain some decisive constraints for the geomagnetic field strength during the Plio-Pleistocene time. The age of the volcanic units, which yielded reliable paleointensity estimates, lies between 2.2 and 0.8 Ma according to the available K/Ar radiometric data. Thermomagnetic investigations reveal that remanence is carried in most cases by Ti-poor titanomagnetite, resulting from oxy-exsolution that probably occurred during the initial flow cooling. Unblocking temperature spectra and relatively high coercivity point to ‘small’ pseudo-single domain magnetic grains for these (titano)magnetites. Single-component, linear demagnetization plots were observed in most cases. Six flows yield reverse polarity magnetization, five flows are normally magnetized, and one flow shows intermediate polarity magnetization. Evidence of a strong lightning-produced magnetization overprint was detected for one site. The mean pole position obtained in this study is Plat = 83.7°, Plong = 178.1°, K = 36, A95 = 8.1°, N = 10 and the corresponding mean paleodirection is I = 31.3°, D = 352°, k = 37, α95 = 8.2°, which is not significantly different from the expected direction estimated from the North American apparent polar wander path. Thirty-nine samples were pre-selected for Thellier palaeointensity experiments because of their stable remanent magnetization and relatively weak-within-site dispersion. Only 21 samples, coming from four individual basaltic lava flows, yielded reliable paleointensity estimates with the flow-mean virtual dipole moments (VDM) ranging from 6.4 to 9.1 × 1022 Am2. Combining the coeval Mexican data with the available comparable quality Pliocene paleointensity results yield a mean VDM of 6.4 × 1022 Am2, which is almost 80% of the present geomagnetic axial dipole. Reliable paleointensity results for the last 5 Ma are still scarce and are of dissimilar quality. Additional high-quality absolute intensity determinations are needed to better constraint the geomagnetic field strength during the Plio-Pleistocene time.

References

  • Alva-Valdivia, L. M., A. Goguitchaichvili, L. Ferrari, J. Rosas-Elguera, J. Urrutia-Fucugauchi, and J. J. Zamorano-Orozco, Paleomagnetic data from the Trans-Mexican Volcanic Belt: Implications for tectonics and volcanic Stratigraphy, Earth Planets Space, 52, 467–478, 2000.

    Article  Google Scholar 

  • Barton, C. E., R. Baldwin, D. Barraclough, S. Bushati, M. Chiappini, Y. Cohen, R. Coleman, G. Hulot, V. Kotze, V. Golovkov, A. Jackson, R. Langel, F. Lowes, D. McKnight, S. Macsmillan, L. Newitt, N. Peddie, J. Quinn, and T. Sabaka, International geomagnetic reference field, 1995 revision, Geophys. J. Int., 125, 318–321, 1996.

    Article  Google Scholar 

  • Besse, J. and V. Courtillot, Revised and synthetic apparent polar wander paths of the African, Eurasian, North American and Indian Plates, and true polar wander since 200 Ma, J. Geophys. Res., 96, 4029–4050, 1991.

    Article  Google Scholar 

  • Cantagrel, J. and C. Robin, K-Ar dating on eastern Mexican volcanic rocks—relations between the andesitic and the alkaline provinces, J. Volcanol. Geotherm. Res., 5, 99–114, 1979.

    Article  Google Scholar 

  • Coe, R. S., S. Grommé, and E. A. Maniken, Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.

    Article  Google Scholar 

  • Coe, R., L. Hongre, and G. A., Glatzmaier, An examination of simulated geomagnetic reversals from a paleomagnetic perspective, Phil. Trans. Roy. Soc. London, Series A, 357, 1787–1813, 2000.

    Google Scholar 

  • Day, R., M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Int., 13, 260–267, 1977.

    Article  Google Scholar 

  • Dunlop, D. and O. Ozdemir, Rock-Magnetism, fundamentals and frontiers, Cambrige University Press, 573 pp., 1997.

  • Glatzmaier, G. A., R. S. Coe, L. Hongre, and P. H. Roberts, The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals, Nature, 401, 885–890, 1999.

    Article  Google Scholar 

  • Friedlaender, I. and R. A. Sonder, Uber das vulkangebiet von San Martin Tuxtla in Mexiko, Zeitschrift fur vulkanologie, VII, 162–187, 1923.

    Google Scholar 

  • Goguitchaichvili, A., M. Prévot, and P. Camps, No evidence for strong fields during the R3–N3 Icelandic geomagnetic reversals, Earth Planet. Sci. Lett., 167, 15–34, 1999a.

    Article  Google Scholar 

  • Goguitchaichvili, A., M. Prévot, J. M. Dautria, and M. Bacia, Thermo-detrital and crystalline magnetizations in an Icelandic hyaloclastite, J. Geophys. Res., 104, 29219–29239, 1999b.

    Article  Google Scholar 

  • Goguitchaichvili, A., L. Alva Valdivia, J. Morales, and J. Gonzalez, New Contributions to the Early Pliocene geomagnetic strength, Geofisica Internacional, 3, 277–284, 2000a.

    Google Scholar 

  • Goguitchaichvili, A., P. Camps, and J. Urrutia-Fucugauchi, On the features of the geodinamo following reversals and excursions: by absolute geomagnetic intensity data, Phys. Earth Planet. Int., 124, 81–93, 2000b.

    Article  Google Scholar 

  • Juarez, M. T. and L. Tauxe, The intensity of the time-averaged geomagnetic field: the last 5 Myr, Earth Planet. Sci. Lett., 175, 169–180, 2000.

    Article  Google Scholar 

  • Kirschvink, J. L., The least-square line and plane and analysis of palaeo-magnetic data, Geophys. J. R. Astron. Soc, 62, 699–718, 1980.

    Article  Google Scholar 

  • Kosterov, A. and M. Prévot, Possible machanisms causing failure of thellier paleointensity experiments: results of rock magnetic study of the Lesotho basalt, Southern Africa. Geophys. J. Int., 134, 554–572, 1998.

    Article  Google Scholar 

  • Nagata, T., R. M. Fisher, and K. Momose, Secular variation of the geomagnetic total force during the last 5000 years, J. Geophys. Res., 68, 5277–5281, 1963.

    Article  Google Scholar 

  • Nelson, S. A. and E. Gonzalez-Caver, Geology and K-Ar dating of the Tuxtla volcanic field, Veracruz, Mexico. Bull. Volcanol., 55, 85–89, 1992.

    Article  Google Scholar 

  • Nelson, S. A., E. Gonzalez-Caver, and T. K. Kyser, Constraints on the origin of alkaline and calc-alkaline magmas from the Tuxtla volcanic field, Veracruz, Mexico. Contrib. Mineral. Petrol, 122, 191–211, 1995.

    Article  Google Scholar 

  • Ozdemir, O., D. Dunlop, and B. M. Moskowitz, The effect of oxidation on the Verwey transition in magnetite, Geophys. Res. Lett., 20, 1671–1674, 1993.

    Article  Google Scholar 

  • Perrin, M. and V. P. Shcherbakov, Paleointensity of the earth magnetic field for the past 400 My: evidence for a dipole structure during the Mesozoic low, J. Geomag. Geoelectr, 49, 601–614, 1997.

    Article  Google Scholar 

  • Perrin, M., E. Schnepp, and V. Shcherbakov, Paleointensity database updated, EOS, 79, 198, 1998.

    Article  Google Scholar 

  • Pichler, H. and R. Weyl, Quaternary alkaline volcanic rocks in eastern Mexico and Central America, Munster Forsch. Geol. Palant, 38-39, 159–178, 1976.

    Google Scholar 

  • Pick, T. and L. Tauxe, Geomagnetic paleointensities during the Cretaceous normal superchron measured using submarine basaltic glass, Nature, 366, 238–242, 1993.

    Article  Google Scholar 

  • Prévot, M., M. E. M. Derder, J. McWilliams, and J. Thompson, Intensity of the Earth’s magnetic field: evidence for a Mesozoic dipole low, Earth Planet. Sci. Lett., 97, 129–139, 1990.

    Article  Google Scholar 

  • Schnepp, E., Geomagnetic paleointensities derived from volcanic rocks of the Quaternary East Eifel volcanic field, Germany, Phys. Earth Planet. Int., 94, 23–41, 1996.

    Article  Google Scholar 

  • Schnepp, E. and H. Hradetzky, Combined paleointensity and Ar/Ar age spectrum data from volcanic rocks of the West Eifel field (Germany): Evidence for an early Brunhes geomagnetic excursion, J. Geophys. Res., 99, 9061–9072, 1994.

    Article  Google Scholar 

  • Selkin, P. A. and L. Tauxek, Long-term variations in palaeointensity, Phil. Trans. R. Soc. Lond. A, 358, 1065–1088, 2000.

    Article  Google Scholar 

  • Tanaka, H., M. Kono, and S. Kaneko, Paleosecular variation of direction and intensity from two Pliocene-Pleistocene lava sections in Southwestern Iceland, J. Geomag. Geoelectr, 47, 89–102, 1995.

    Article  Google Scholar 

  • Tauxe, L., T. A. T. Mullender, and T. Pick, Pot-bellies, wasp-waists and superparamagnetism in magnetic hysteresis, J. Geophys. Res., 95, 12337–12350, 1996.

    Article  Google Scholar 

  • Thellier, E. and O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann Géophysique, 15, 285–376, 1959.

    Google Scholar 

  • Thorpe, R. S., Tectonic significance of alkaline volcanism in eastern Mexico, Tectonophys., 40, T19–T26, 1977.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luis M. Alva-Valdivia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alva-Valdivia, L.M., Goguitchaichvili, A. & Urrutia-Fucugauchi, J. Further constraints for the Plio-Pleistocene geomagnetic field strength: New results from the Los Tuxtlas volcanic field (Mexico). Earth Planet Sp 53, 873–881 (2001). https://doi.org/10.1186/BF03351684

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351684

Keywords

  • Natural Remanent Magnetization
  • Virtual Dipole Moment
  • Geomagnetic Field Strength
  • Paleointensity Experiment
  • Paleointensity Data