Skip to main content

Magnetic properties of subaerial basalts at low temperatures

Abstract

Magnetic properties have been measured as a function of temperature from 2 K to room temperature for twenty-one samples of subaerial basalts of different origin and age, using an MPMS instrument. In all samples but four, titanomagnetite with a titanium content of less than 5 per cent has been determined as a dominant magnetic mineral carrying NRM from χ(T) measurements above room temperature and Verwey transition observations. However, the new low-temperature experiments yielded evidence of the presence of another magnetic mineral in all samples. This mineral accounts for up to 70 per cent of saturation magnetization at 2 K and acquires a relatively strong but thermally unstable SIRM at this temperature. Comparison of susceptibility vs. temperature curves measured in low and high DC biasing fields reveals evidence of superparamagnetic behavior, peaks marking the effective blocking temperatures being shifted from <2 K to about 16 K by a 4.8 T DC magnetic field. At the same time, the presence of peaks in the high-field susceptibility curves indicate that the corresponding magnetic phase does not reach saturation, even in the highest field available to us. A possible candidate to account for these properties is a hemoilmenite with 8–10 mole per cent of hematite, originating from high-temperature deuteric oxidation. This is in accordance with the prevailing occurrence of exsolution lamellae within titanomagnetite grains observed in scanning electron microscopy (SEM) images.

References

  • Aragón, R., Magnetization and exchange in nonstoichiometric magnetite, Phys. Rev. B, 46, 5328–5333, 1992.

    Article  Google Scholar 

  • Aragón, R., D. J. Buttrey, J. P. Shepherd, and J. M. Honig, Influence of nonstoichiometry on the Verwey transition, Phys. Rev. B, 31, 430–436, 1985.

    Article  Google Scholar 

  • Banerjee, S. K., Magnetic properties of Fe-Ti oxides, in Oxide Minerals: Petrologic and Magnetic Significance, edited by D. L. Lindsley, pp. 107–128, Mineralogical Society of America, 1991.

  • Bozorth, R. M., D. E. Walsh, and A. J. Williams, Magnetization of ilmenite-hematite system at low temperatures, Phys. Rev., 108, 157–158, 1957.

    Article  Google Scholar 

  • Brabers, V. A. M., F. Walz, and H. Kronmüller, Impurity effects upon the Verwey transition in magnetite, Phys. Rev. B, 58, 14163–14166, 1998.

    Article  Google Scholar 

  • Brodskaya, S. Yu. and G. M. Zaytseva, Magnetic characteristics of hemoilmenites with low Curie points, Izv., Earth. Phys., 12, 219–223, 1976.

    Google Scholar 

  • Buddington, A. F. and D. H. Lindsley, Iron-titanium oxide minerals and synthetic equivalents, J. Petrol, 5, 310–357, 1964.

    Article  Google Scholar 

  • Chauvin, A., P. Roperch, and R. A. Duncan, Records of geomagnetic reversals from volcanic islands of French Polynesia 2. Paleomagnetic study of a flow sequence (1.2−0.6 Ma) from the Island of Tahiti and discussion of reversal models, J. Geophys. Res., 95, 2727–2752, 1990.

    Article  Google Scholar 

  • Chauvin, A., P.-Y. Gillot, and N. Bonhommet, Paleointensity of the Earth’s magnetic field recorded by two Late Quaternary volcanic sequences at the Island of La Réunion (Indian Ocean), J. Geophys. Res., 96, 1981–2006, 1991.

    Article  Google Scholar 

  • Clark, D. A. and P. W. Schmidt, Theoretical analysis of thermomagnetic properties, low-temperature hysteresis and domain structure of titano-magnetites, Phys. Earth Planet. Inter, 30, 300–316, 1982.

    Article  Google Scholar 

  • Dunlop, D. J. and O. Ozdemir, Rock Magnetism: Fundamentals and Frontiers, 573 pp., Cambridge University Press, Cambridge, New York, 1997.

    Book  Google Scholar 

  • Haggerty, S. E., Oxidation of opaque mineral oxides in basalts, in Oxide Minerals, edited by D. Rumble, pp. Hg1–Hg100, Mineralogical Society of America, 1976.

  • Hodych, J. P., Magnetic hysteresis as a function of low temperature for deep-sea basalts containing large titanomagnetite—inference of domain state and controls on coercivity, Can. J. Earth Sci., 19, 144–152, 1982.

    Article  Google Scholar 

  • Hodych, J. P., Magnetic hysteresis as a function of low temperature in rocks: evidence for internal stress control of remanence in multi-domain and pseudo-single-domain magnetite, Phys. Earth Planet. Inter., 64, 21–36, 1990.

    Article  Google Scholar 

  • Hodych, J. P., Low-temperature demagnetization of saturation remanence in rocks bearing multidomain magnetite, Phys. Earth Planet. Inter, 66, 144–152, 1991.

    Article  Google Scholar 

  • Hoye, G. S. and W. O’Reilly, A magnetic study of the ferro-magnesian olivines (FexMg1−x)2SiO4, 0 < x < 1, J. Phys. Chem. Solids, 33, 1827–1834, 1972.

    Article  Google Scholar 

  • Ishikawa, Y., Magnetic properties of ilmenite-hematite system at low temperature, J. Phys. Soc. Jpn., 17, 1835–1844, 1962.

    Article  Google Scholar 

  • Ishikawa, Y. and S. Akimoto, Magnetic properties of the FeTiO3−Fe2O3 solid solution series, J. Phys. Soc. Jpn., 12, 1083–1098, 1957.

    Article  Google Scholar 

  • Kosterov, A. A. and M. Prévot, Possible mechanisms causing failure of Thellier palaeointensity experiments in some basalts, Geophys. J. Int., 134, 554–572, 1998.

    Article  Google Scholar 

  • Kosterov, A. A., M. Prévot, M. Perrin, and V. A. Shashkanov, Paleointensity of the Earth’s magnetic field in Jurassic: new results from a Thellier study of the Lesotho Basalt, Southern Africa, J. Geophys. Res., 102, 24859–24872, 1997.

    Article  Google Scholar 

  • Kosterov, A. A., M. Perrin, J. M. Glen, and R. S. Coe, Paleointensity of the Earth’s magnetic field in Early Cretaceous time: The Parana Basalt, Brazil, J. Geophys. Res., 103, 9739–9753, 1998.

    Article  Google Scholar 

  • Koz/klowski, A., P. Metcalf, Z. Kakol, and J. M. Honig, Electrical and magnetic properties of Fe3−zAlzO4 (z < 0. 06), Phys. Rev. B, 53, 15113–15118, 1996a.

    Article  Google Scholar 

  • Koz/klowski, A., Z. Kakol, D. Kim, R. Zaleski, and J. M. Honig, Heat capacity of Fe3-αMαO4 (M = Zn, Ti, 0 ≤ α ≤ 0. 04), Phys. Rev. B, 54, 12093–12098, 1996b.

    Article  Google Scholar 

  • Lethuillier, P. and P. Massal, Propriétés magnétiques de grenats et d’ilménites naturels prélevés dans des gisements variés, Bull. Minéral., 103, 33–39, 1980.

    Google Scholar 

  • Merrill, R. T., Low-temperature treatments of magnetite and magnetite-bearing rocks, J. Geophys. Res., 75, 3343–3349, 1970.

    Article  Google Scholar 

  • Moskowitz, B. M., M. Jackson, and C. Kissel, Low-temperature magnetic behavior of titanomagnetites, Earth Planet. Sci. Lett., 157, 141–149, 1998.

    Article  Google Scholar 

  • Nagata, T., K. Kobayashi, and M. D. Fuller, Identification of magnetite and hematite in rocks by magnetic observations at low temperature, J. Geophys. Res., 69, 2111–2120, 1964.

    Article  Google Scholar 

  • Néel, L., Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites, Ann. Geophys., 5, 99–136, 1949.

    Google Scholar 

  • Néel, L., Some theoretical aspects of rock-magnetism, Adv. Phys., 4, 191–243, 1955.

    Article  Google Scholar 

  • O’Reilly, W., Rock andMineral Magnetism, 220 pp., Blackie, Glasgow and London, & Chapman and Hall, New York, 1984.

    Book  Google Scholar 

  • Potapov, G. A., L. N. Romashov, B. B. Zhalsabon, and V. M. Lapushkov, Some peculiarities of magnetic structure and properties of ilmenite varieties, Izv, Earth Phys., 30, 365–368, 1994.

    Google Scholar 

  • Radhakrishnamurty, C., S. D. Likhite, E. R. Deutsch, and G. S. Murthy, A comparison of the magnetic properties of synthetic titanomagnetites and basalts, Phys. Earth Planet. Inter, 26, 37–46, 1981.

    Article  Google Scholar 

  • Riisager, P. and N. Abrahamsen, Palaeointensity of West Greenland Palaeocene basalts: asymmetric intensity around the C27n−C26r transition, Phys. Earth Planet. Inter, 118, 53–64, 2000.

    Article  Google Scholar 

  • Santoro, R. P., R. E. Newham, and S. Nomura, Magnetic properties of Mn2SiO4 and Fe2SiO4, J. Phys. Chem. Solids, 27, 655–666, 1966.

    Article  Google Scholar 

  • Sawaoka, A., S. Miyahara, and S. Akimoto, Magnetic properties of several metasilicates and metagermanates with pyroxene structure, J. Phys. Soc. Jpn., 25, 1253–1257, 1968.

    Article  Google Scholar 

  • Senanayake, W. E. and M. W. McElhinny, Hysteresis and susceptibility characteristics of magnetite and titanomagnetites: interpretation of results from basaltic rocks, Phys. Earth Planet. Inter, 26, 47–55, 1981.

    Article  Google Scholar 

  • Senanayake, W. E. and M. W. McElhinny, The effects of heating on low-temperature hysteresis and susceptibility properties of basalts, Phys. Earth Planet. Inter, 30, 317–321, 1982.

    Article  Google Scholar 

  • Senftle, F. E., A. N. Thorpe, C. Briggs, C. Alexander, J. Minkin, and D. L. Griscom, The Néel transition and magnetic properties of terrestrial, synthetic, and lunar ilmenites, Earth Planet. Sci. Lett., 26, 377–386, 1975.

    Article  Google Scholar 

  • Shau, Y.-H., M. Torii, C.-S. Horng, and D. R. Peacor, Subsolidus evolution and alteration of titanomagnetite in ocean ridge basalts from Deep Sea Drilling Project/Ocean Drilling Program Hole 504B, Leg 83: Implications for the timing of magnetization, J. Geophys. Res., 105, 23635–23649, 2000.

    Article  Google Scholar 

  • Sherwood, G. J., Rock magnetic studies of Miocene volcanics in eastern Otago and Banks Peninsula, New Zealand; comparison between Curie temperature and low temperature susceptibility behaviour, New Zealand J. Geol. Geophys., 31, 225–235, 1988.

    Article  Google Scholar 

  • Simsa, Z., F. Zounová, and S. Krupička, Initial permeability of single crystal magnetite and Mn-ferrite, Czech. J. Phys. B, 35, 1271–1281, 1985.

    Article  Google Scholar 

  • Skumryev, V., H. J. Blythe, J. Cullen, and J. M. D. Coey, AC susceptibility of a magnetite crystal, J. Magn. Magn. Mater, 196-197, 515–517, 1999.

    Article  Google Scholar 

  • Syono, Y., Magnetocrystalline anisotropy and magnetostriction of Fe3O4−Fe2TiO4 series—with special application to rocks magnetism, Jpn. J. Geophys., 4, 71–143, 1965.

    Google Scholar 

  • Thellier, E. and O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Geophys., 15, 285–376, 1959.

    Google Scholar 

  • Thomas, N., An integrated rock magnetic approach to the selection or rejection of ancient basalt samples for palaeointensity experiments, Phys. Earth Planet. Inter, 75, 329–342, 1993.

    Article  Google Scholar 

  • Thorpe, A. N., J. A. Minkin, F. E. Senftle, C. Alexander, C. Briggs, H. T. Evans, Jr., and G. L. Nord, Jr., Cell dimensions and antiferromagnetism of lunar and terrestrial ilmenite single crystals, J. Phys. Chem. Solids, 38, 115–123, 1977.

    Article  Google Scholar 

  • Tucker, P. and W. O’Reilly, The laboratory simulation of deuteric oxidation of titanomagnetites: effect on magnetic properties and stability of thermoremanence, Phys. Earth Planet. Inter, 23, 112–133, 1980.

    Article  Google Scholar 

  • Worm, H. U. and M. Jackson, The superparamagnetism of Yucca Mountain Tuff, J. Geophys. Res., 104, 25415–25425, 1999.

    Article  Google Scholar 

  • Yakubovskaya, N. Yu. and I. P. Ilupin, Magnetic properties of picroilmenite from kimberlites of Siberia, Mineral. J., 4(5), 36–43, 1982 (in Russian with English abstract).

    Google Scholar 

  • Yakubovskaya, N. Yu. and V. A. Fradkov, Magnetic structure of ilmenite, Mem. All-Union Min. Soc, 115, 490–495, 1986 (in Russian).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrei Kosterov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kosterov, A. Magnetic properties of subaerial basalts at low temperatures. Earth Planet Sp 53, 883–892 (2001). https://doi.org/10.1186/BF03351685

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351685

Keywords

  • Magnetite
  • Hematite
  • Earth Planet
  • Curie Temperature
  • Ilmenite