Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Collisional destruction experiment of chondrules and formation of fragments in the solar nebula

Abstract

Collisional destruction experiments with chondrules from the Allende CV3 chondrite were performed over a range of velocities (10 m/s to 76 m/s). Electron microscopy shows that two types of chondrules were affected by low-velocity impacts: (1) reactivated pre-existing cracks filled with iron-oxides and (2) poorly crystallized finegrained silicates in glass. The relatively-well crystallized chondrules were destroyed at higher impact velocities. Based on the range of velocities causing chondrule destruction, we theoretically examined the condition of the solar nebula in the chondrule destruction periods and suggest that collisional destruction of chondrules can occur during abrupt and/or localized strong turbulence, in a nebular shock, by a collision between a chondrule and an object larger than 1 m in the laminar solar nebula.

References

  1. Adachi, I., C. Hayashi, and K. Nakazawa, The gas drag effect on the elliptic motion of a solid body in the primordial solar nebula, Progr. Theor. Phys., 56, 1756–1771, 1976.

    Article  Google Scholar 

  2. Bertout, C., G. Basri, and J. Bouvier, Accretion disks around T Tauri stars, Astrophys. J., 330, 350–373, 1988.

    Article  Google Scholar 

  3. Bunch, T. E. and R. S. Rajan, Meteorite regolithic breccias, in Meteorites and the Early Solar System, edited by J. F. Kerridge and M.S. Matthews, pp. 144–164, Univ. Arizona Press, Tucson, 1988.

    Google Scholar 

  4. Clayton, R. N. and T. K. Mayeda, Oxygen isotope studies of carbonaceous chondrites, Geochim. Cosmochim. Acta, 63, 2089–2104, 1999.

    Article  Google Scholar 

  5. Gooding, J. L. and K. Keil, Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation, Meteoritics, 16, 17–43, 1981.

    Article  Google Scholar 

  6. Hayashi, C., Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula, Progr Theor Phys. Suppl, 70, 35–53, 1981.

    Article  Google Scholar 

  7. Hayashi, C., K. Nakazawa, and Y. Nakagawa, Formation of the Solar System, in Protostars and Planets II, edited by D. C. Black and M. S. Matthews, pp. 1100–1153, Univ. Arizona Press, Tucson, 1985.

    Google Scholar 

  8. Hewins, R. H., Retention of sodium during chondrule melting, Geochim. Cosmochim. Acta, 55, 935–942, 1991.

    Article  Google Scholar 

  9. Hood, L. L. and M. Horanyi, Gas dynamic heating of chondrule precursor grains in the solar nebula, Icarus, 93, 259–269, 1991.

    Article  Google Scholar 

  10. Hood, L. L. and M. Horanyi, The nebular shock wave model for chondrule formation: One-dimensional calculations, Icarus, 106, 179–189, 1993.

    Article  Google Scholar 

  11. King, T. V. V. and E. A. Elbert, Grain size and petrography of C2 and C3 carbonaceous chondrites, Meteoritics, 13, 47–72, 1978.

    Article  Google Scholar 

  12. Krot, A. N., M. I. Petaev, E. R. D. Scott, B. G. Choi, M. E. Zolensky, and K. Keil, Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration, Meteoritics and Planet. Sci., 33, 1065–1085, 1998.

    Article  Google Scholar 

  13. Liffman, K. and M. J. I. Brown, The Protostellar jet model of chondrule formation, in Chondrules and the Protoplanetary Disk, edited by R. H. Hewins, R. H. Jones, and E. R. D. Scott, pp. 285–302, Cambridge Univ. Press, Cambridge, 1996.

    Google Scholar 

  14. McSween, H. Y., Petrographic variations among carbonaceous chondrites of the Vigarano type, Geochim. Cosmochim. Acta, 41, 1777–1790, 1977.

    Article  Google Scholar 

  15. Metzler, K., A. Bischoff, and D. Stöffler, Accretionary dust mantles in CM chondrite: Evidence for solar nebula process, Geochim. Cosmochim. Acta, 56, 2873–2897, 1992.

    Article  Google Scholar 

  16. Nakamura, T., K. Tomeoka, N. Takaoka, T. Sekine, and H. Takeda, Impact-induced textural changes of CV carbonaceous chondrites: Experimental reproduction, Icarus, 146, 289–300, 2000.

    Article  Google Scholar 

  17. Pringle, J. E., Accretion discs in astrophysics, Ann. Rev. Astron. Astrophys., 19, 137–162, 1981.

    Article  Google Scholar 

  18. Scott, E. R. D., K. Keil, and D. Stöffler, Shock metamorphism of carbonaceous chondrites, Geochim. Cosmochim. Acta, 56, 4281–4293, 1992.

    Article  Google Scholar 

  19. Sekiya, M., Quasi-equilibrium density distributions of small dust aggregations in the solar nebula, Icarus, 133, 298–309, 1998.

    Article  Google Scholar 

  20. Sekiya, M. and T. Nakamura, Condition for the formation of the compound chondrules in the solar nebula, Proc. NIPR Symp. on Antarctic Meteorites, 9, 208–217, 1996.

    Google Scholar 

  21. Shu, F. H., H. Shang, and T. Lee, Toward an astrophysical theory of chondrites, Science, 271, 1545–1552, 1996.

    Article  Google Scholar 

  22. Shu, F. H., H. Shang, A. E. Glassgold, and T. Lee, X-rays and fluctuating X-winds from protostars, Science, 277, 1475–1479, 1997.

    Article  Google Scholar 

  23. Steele, I. M., Primitive material surviving in chondrites: mineral grains, in Meteorites and the Early Solar System, edited by J. F. Kerridge and M. S. Matthews, pp. 808–818, Univ. Arizona Press, Tucson, 1988.

    Google Scholar 

  24. Toomre, A., On the gravitational stability of a disk of stars, Astrophys. J., 139, 1217–1238, 1964.

    Article  Google Scholar 

  25. Völk, H. J., F. C. Jones, G. E. Morfill, and S. Roser, Collisions between grains in a turbulent gas, Astron. Astrophys., 85, 316–325, 1980.

    Google Scholar 

  26. Wasson, J. T., Chondritic meteorites as products of the solar nebula, in Meteorites, pp. 136–154, Springer-Verlag, New York, 1974.

    Google Scholar 

  27. Weidenschilling, S. J., Aerodynamics of solid bodies in the solar nebula, Mon. Not. R. Astron. Soc, 180, 57–70, 1977.

    Article  Google Scholar 

  28. Weisberg, M. K. and M. Prinz, Fayalitic olivine in CV3 chondrite matrix and dark inclusions: A nebula origin, Meteoritics and Planet. Sci, 33, 1087–1099, 1998.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Minoru Sekiya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ueda, T., Murakami, Y., Ishitsu, N. et al. Collisional destruction experiment of chondrules and formation of fragments in the solar nebula. Earth Planet Sp 53, 927–935 (2001). https://doi.org/10.1186/BF03351689

Download citation

Keywords

  • Olivine
  • Solar Nebula
  • Glass Sphere
  • Carbonaceous Chondrite
  • Tauri Star