Skip to main content

Advertisement

Scaling of apparent stress from broadband radiated energy catalogue and seismic moment catalogue and its focal mechanism dependence

Article metrics

  • 286 Accesses

  • 12 Citations

Abstract

Comparison between the NEIC broadband radiated energy catalogue and the Harvard CMT catalogue provides information about the properties of apparent stress. Based on the numerical studies of Shaw (1998) we examined the ratio of broadband radiated energy and scalar seismic moment of shallow earthquakes worldwide from 1987 to 1998. It is observed that for different focal mechanisms, scaling of apparent stress or ‘scaled energy’ with seismic moment is different. For thrust and normal events, apparent stress decreases with seismic moment; while for strike-slip events, apparent stress increases with seismic moment. On average, for thrust events, the apparent stress of aftershocks is higher than that of main shocks; for strike-slip events, the apparent stress of aftershocks is lower than that of main shocks; while the situation of normal events is in between.

References

  1. Backus, G. E., Interpreting the seismic glut moments of total degree two or less, Geophys. J. R. astron. Soc., 51, 1–25, 1977a.

  2. Backus, G. E., Seismic sources with observable glut moments of spatial degree two, Geophys. J. R. astron. Soc., 51, 27–45, 1977b.

  3. Backus, G. and M. Mulcahy, Moment tensors and other phenomenological descriptions of seismic sources. I: continuous displacements, Geophys. J. R. astron. Soc., 46, 341–361, 1976.

  4. Backus, G. and M. Mulcahy, Moment tensors and other phenomenological descriptions of seismic sources. II: discontinuous displacements, Geophys. J. R. astron. Soc., 47, 301–329, 1977.

  5. Boatwright, J. and G. L. Choy, Teleseismic estimates of the energy radiated by shallow earthquakes, J. Geophys. Res., 91, 2095–2112, 1986.

  6. Choy, G. L. and J. L. Boatwright, Global patterns of radiated seismic energy and apparent stress, J. Geophys. Res., 100, 18,205–18,288, 1995.

  7. Dziewonski, A. M., T.-A. Chou, and J. H. Woodhouse, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852, 1981.

  8. Frohlich, C., Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms, Phys. Earth Planet. Inter., 75, 193–198, 1992.

  9. Frohlich, C., Display and quantitative assessment of distributions of earthquake focal mechanisms, Geophys. J. Int., 144, 300–308, 2000.

  10. Frohlich, C. and S. D. Davis, Teleseismic bvalues; or, much ado about 1.0, J. Geophys. Res., 98, 631–644, 1993.

  11. Frohlich, C., M. F. Coffin, C. Massell, P. Mann, C. L. Schuur, S. D. Davis, T. Jones, and G. Karner, Constraints on Macquarie Ridge tectonics provided by Harvard focal mechanisms and teleseismic earthquake locations, J. Geophys. Res., 102, 5029–5041, 1997.

  12. Gilbert, F., Exitation of the normal modes of the Earth by earthquake sources, Geophys. J. R. astron. Soc., 22, 223–226, 1970.

  13. Harvey, D. and G. L. Choy, Broadband deconvolution of GDSN data, Geophys. J. R. astron. Soc., 69, 659–668, 1982.

  14. Kagan, Y. Y., Seismic moment-frequency relation for shallow earthquakes: Regional comparison, J. Geophys. Res., 102, 2835–2852, 1997.

  15. Kagan, Y. Y., Temporal correlations of earthquake focal mechanisms, Geophys. J. Int., 143, 881–897, 2000.

  16. Kagan, Y. Y. and D. D. Jackson, Long-term probabilistic forecasting of earthquakes, J. Geophys. Res., 99, 13,685–13,700, 1994.

  17. Kagan, Y. Y. and D. D. Jackson, New seismic gap hypothesis: Five years after, J. Geophys. Res., 100, 3943–3959, 1995.

  18. Kagan, Y. Y. and D. D. Jackson, Worldwide doublets of large shallow earthquakes, Bull. Seism. Soc. Am., 89, 1147–1155, 1999.

  19. Kanamori, H. and T. H. Heaton, Microscopic and macroscopic physics of earthquakes, in GeoComplexity and the Physics of Earthquakes, edited by J. B. Rundle, D. L. Turcotte, and W. Klein, Washington, D. C, AGU, 147–163, 2000.

  20. Kanamori, H., D. L. Anderson, and T. H. Heaton, Frictional melting during the rupture of the 1994 Bolivian earthquake, Science, 279, 839–842, 1998.

  21. Kawakatsu, H., Enigma of earthquakes at ridge-transform-fault plate boundaries-distribution of non-double couple parameter of Harvard CMT solutions, Geophys. Res. Lett., 18, 1103–1106, 1991.

  22. Molchan, G. M. and O. E. Dmitrieva, Aftershock identification: methods and new approaches, Geophys. J. Int., 109, 501–516, 1992.

  23. Newman, A. V. and E. A. Okal, Teleseismic estimates of radiated seismic energy: The E/M0 discriminant for tsunami earthquakes, J. Geophys. Res., 103, 26,885–26,898, 1998.

  24. Patton, H. J., Bias in the centroid moment tensor for central Asian earthquakes: Evidence from regional surface wave data, J. Geophys. Res., 103, 26,963–26,974, 1998.

  25. Perez-Campos, X. and G. C. Beroza, An apparent mechanism dependence of radiated seismic energy, J. Geophys. Res., 106, 11,127–11,136, 2001.

  26. Pulido, N. and K. Irikura, Estimation of dynamic rupture parameteres from the radiated seismic energy and apparent stress, Geophys. Res. Lett., 27, 3945–3948, 2000.

  27. Reasenberg, P. A., Foreshock occurrence before large earthquakes, J. Geophys. Res., 104, 4755–4768, 1999.

  28. Shaw, B., Far-field radiated energy scaling in elastodynamic earthquake fault models, Bull. Seism. Soc. Am., 88, 1457–1465, 1998.

  29. Sornette, D., L. Knopoff, Y. Y. Kagan, and C. Vanneste, Rank-ordering statistics of extreme events: Application to the distribution of large earthquakes, J. Geophys. Res., 101, 13,883–13,893, 1996.

  30. Tanimoto, T. and T. Okamoto, Change of crustal potential energy by earthquakes: an indicator for extensional and compressional tectonics, Geophys. Res. Lett., 27, 2313–2316, 2000.

  31. Tsuruoka, H., M. Ohtake, and H. Sato, Statistical test of the tidal triggering of earthquakes: contribution of the ocean tide loading effect, Geophys. J. Int., 122, 183–194, 1995.

  32. Wu, Z. L., Frequency-size distribution of global seismicity seen from broadband radiated energy, Geophys. J. Int., 142, 59–66, 2000.

  33. Wyss, M. and J. N. Brune, Seismic moment, stress, and source dimensions for earthquakes in the California-Nevada region, J. Geophys. Res., 73, 4681–4694, 1968.

Download references

Author information

Correspondence to Z. L. Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Z.L. Scaling of apparent stress from broadband radiated energy catalogue and seismic moment catalogue and its focal mechanism dependence. Earth Planet Sp 53, 943–948 (2001) doi:10.1186/BF03351691

Download citation

Keywords

  • Focal Mechanism
  • Main Shock
  • Seismic Moment
  • Seismic Source
  • Seismic Energy