Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Scaling of apparent stress from broadband radiated energy catalogue and seismic moment catalogue and its focal mechanism dependence

Abstract

Comparison between the NEIC broadband radiated energy catalogue and the Harvard CMT catalogue provides information about the properties of apparent stress. Based on the numerical studies of Shaw (1998) we examined the ratio of broadband radiated energy and scalar seismic moment of shallow earthquakes worldwide from 1987 to 1998. It is observed that for different focal mechanisms, scaling of apparent stress or ‘scaled energy’ with seismic moment is different. For thrust and normal events, apparent stress decreases with seismic moment; while for strike-slip events, apparent stress increases with seismic moment. On average, for thrust events, the apparent stress of aftershocks is higher than that of main shocks; for strike-slip events, the apparent stress of aftershocks is lower than that of main shocks; while the situation of normal events is in between.

References

  1. Backus, G. E., Interpreting the seismic glut moments of total degree two or less, Geophys. J. R. astron. Soc., 51, 1–25, 1977a.

    Article  Google Scholar 

  2. Backus, G. E., Seismic sources with observable glut moments of spatial degree two, Geophys. J. R. astron. Soc., 51, 27–45, 1977b.

    Article  Google Scholar 

  3. Backus, G. and M. Mulcahy, Moment tensors and other phenomenological descriptions of seismic sources. I: continuous displacements, Geophys. J. R. astron. Soc., 46, 341–361, 1976.

    Article  Google Scholar 

  4. Backus, G. and M. Mulcahy, Moment tensors and other phenomenological descriptions of seismic sources. II: discontinuous displacements, Geophys. J. R. astron. Soc., 47, 301–329, 1977.

    Article  Google Scholar 

  5. Boatwright, J. and G. L. Choy, Teleseismic estimates of the energy radiated by shallow earthquakes, J. Geophys. Res., 91, 2095–2112, 1986.

    Article  Google Scholar 

  6. Choy, G. L. and J. L. Boatwright, Global patterns of radiated seismic energy and apparent stress, J. Geophys. Res., 100, 18,205–18,288, 1995.

    Article  Google Scholar 

  7. Dziewonski, A. M., T.-A. Chou, and J. H. Woodhouse, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852, 1981.

    Article  Google Scholar 

  8. Frohlich, C., Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms, Phys. Earth Planet. Inter., 75, 193–198, 1992.

    Article  Google Scholar 

  9. Frohlich, C., Display and quantitative assessment of distributions of earthquake focal mechanisms, Geophys. J. Int., 144, 300–308, 2000.

    Article  Google Scholar 

  10. Frohlich, C. and S. D. Davis, Teleseismic bvalues; or, much ado about 1.0, J. Geophys. Res., 98, 631–644, 1993.

    Article  Google Scholar 

  11. Frohlich, C., M. F. Coffin, C. Massell, P. Mann, C. L. Schuur, S. D. Davis, T. Jones, and G. Karner, Constraints on Macquarie Ridge tectonics provided by Harvard focal mechanisms and teleseismic earthquake locations, J. Geophys. Res., 102, 5029–5041, 1997.

    Article  Google Scholar 

  12. Gilbert, F., Exitation of the normal modes of the Earth by earthquake sources, Geophys. J. R. astron. Soc., 22, 223–226, 1970.

    Article  Google Scholar 

  13. Harvey, D. and G. L. Choy, Broadband deconvolution of GDSN data, Geophys. J. R. astron. Soc., 69, 659–668, 1982.

    Article  Google Scholar 

  14. Kagan, Y. Y., Seismic moment-frequency relation for shallow earthquakes: Regional comparison, J. Geophys. Res., 102, 2835–2852, 1997.

    Article  Google Scholar 

  15. Kagan, Y. Y., Temporal correlations of earthquake focal mechanisms, Geophys. J. Int., 143, 881–897, 2000.

    Article  Google Scholar 

  16. Kagan, Y. Y. and D. D. Jackson, Long-term probabilistic forecasting of earthquakes, J. Geophys. Res., 99, 13,685–13,700, 1994.

    Article  Google Scholar 

  17. Kagan, Y. Y. and D. D. Jackson, New seismic gap hypothesis: Five years after, J. Geophys. Res., 100, 3943–3959, 1995.

    Article  Google Scholar 

  18. Kagan, Y. Y. and D. D. Jackson, Worldwide doublets of large shallow earthquakes, Bull. Seism. Soc. Am., 89, 1147–1155, 1999.

    Google Scholar 

  19. Kanamori, H. and T. H. Heaton, Microscopic and macroscopic physics of earthquakes, in GeoComplexity and the Physics of Earthquakes, edited by J. B. Rundle, D. L. Turcotte, and W. Klein, Washington, D. C, AGU, 147–163, 2000.

    Google Scholar 

  20. Kanamori, H., D. L. Anderson, and T. H. Heaton, Frictional melting during the rupture of the 1994 Bolivian earthquake, Science, 279, 839–842, 1998.

    Article  Google Scholar 

  21. Kawakatsu, H., Enigma of earthquakes at ridge-transform-fault plate boundaries-distribution of non-double couple parameter of Harvard CMT solutions, Geophys. Res. Lett., 18, 1103–1106, 1991.

    Article  Google Scholar 

  22. Molchan, G. M. and O. E. Dmitrieva, Aftershock identification: methods and new approaches, Geophys. J. Int., 109, 501–516, 1992.

    Article  Google Scholar 

  23. Newman, A. V. and E. A. Okal, Teleseismic estimates of radiated seismic energy: The E/M0 discriminant for tsunami earthquakes, J. Geophys. Res., 103, 26,885–26,898, 1998.

    Article  Google Scholar 

  24. Patton, H. J., Bias in the centroid moment tensor for central Asian earthquakes: Evidence from regional surface wave data, J. Geophys. Res., 103, 26,963–26,974, 1998.

    Article  Google Scholar 

  25. Perez-Campos, X. and G. C. Beroza, An apparent mechanism dependence of radiated seismic energy, J. Geophys. Res., 106, 11,127–11,136, 2001.

    Article  Google Scholar 

  26. Pulido, N. and K. Irikura, Estimation of dynamic rupture parameteres from the radiated seismic energy and apparent stress, Geophys. Res. Lett., 27, 3945–3948, 2000.

    Article  Google Scholar 

  27. Reasenberg, P. A., Foreshock occurrence before large earthquakes, J. Geophys. Res., 104, 4755–4768, 1999.

    Article  Google Scholar 

  28. Shaw, B., Far-field radiated energy scaling in elastodynamic earthquake fault models, Bull. Seism. Soc. Am., 88, 1457–1465, 1998.

    Google Scholar 

  29. Sornette, D., L. Knopoff, Y. Y. Kagan, and C. Vanneste, Rank-ordering statistics of extreme events: Application to the distribution of large earthquakes, J. Geophys. Res., 101, 13,883–13,893, 1996.

    Article  Google Scholar 

  30. Tanimoto, T. and T. Okamoto, Change of crustal potential energy by earthquakes: an indicator for extensional and compressional tectonics, Geophys. Res. Lett., 27, 2313–2316, 2000.

    Article  Google Scholar 

  31. Tsuruoka, H., M. Ohtake, and H. Sato, Statistical test of the tidal triggering of earthquakes: contribution of the ocean tide loading effect, Geophys. J. Int., 122, 183–194, 1995.

    Article  Google Scholar 

  32. Wu, Z. L., Frequency-size distribution of global seismicity seen from broadband radiated energy, Geophys. J. Int., 142, 59–66, 2000.

    Article  Google Scholar 

  33. Wyss, M. and J. N. Brune, Seismic moment, stress, and source dimensions for earthquakes in the California-Nevada region, J. Geophys. Res., 73, 4681–4694, 1968.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Z. L. Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Z.L. Scaling of apparent stress from broadband radiated energy catalogue and seismic moment catalogue and its focal mechanism dependence. Earth Planet Sp 53, 943–948 (2001). https://doi.org/10.1186/BF03351691

Download citation

Keywords

  • Focal Mechanism
  • Main Shock
  • Seismic Moment
  • Seismic Source
  • Seismic Energy