Skip to main content

Excitation of oblique whistler waves in magnetosphere and in interplanetary space at 1 A.U.

Abstract

The oblique whistler waves have been studied having k vector at an angle to magnetic field for a generalized distribution function reducible to bi-maxwellian and loss-cone. The dispersion relation and growth rate have been obtained for oblique whistler mode instability incorporating the trajectory of the particles, in the presence of perpendicular a-c electric field by method of characteristic solutions. The effects of distribution function and beam effect have been discussed for the space plasma at magnetospheric height and at 1 A.U. The results are compared with satellite observations and reported results obtained by other techniques. Excitation of two separate, but simultaneous left hand polarized whistler mode at 1 A.U. by electron been are demonstrated.

References

  • Block, L. P. and C. G. Falthammer, the role of magnetic field Aligned electric fields in Auroral Acceleration, J. Geophys. Res., 95, 5877–5888, 1990.

    Article  Google Scholar 

  • Borda de Agua, L., Y. Omura, and H. Matsumoto, Competing processes of plasma wave instabilities driven by an anisotropic electron beam: Linear results and two-dimensional particle simulation, J. Geophys. Res., 101, 15475–15490, 1996.

    Article  Google Scholar 

  • Devine, P. E., S. C. Chapman, and J. W. Eastwood, One and two dimensional whistler simulations, J. Geophys. Res., 100, 17189–17203, 1995.

    Article  Google Scholar 

  • Dowden, R. L., Doppler-Shifted cyclotron radiation from electrons, A theory of VLF emissions, J. Geophys. Res., 67, 1745, 1962.

    Article  Google Scholar 

  • Farrugia, C. J., R. P. Rijnbeck, M. A. Saunders, D. J. Southwood, D. J. Rodgers, M. F. Simth, D. S. Chaloner, D. S. Hall, P. J. Christiansen, and L. J. C. Williscroff, Kulti-instrument study of flux transfer event structure, J. Geophys. Res., 93, 14465–14475, 1988.

    Article  Google Scholar 

  • Gary, S. P., The mirror and Ion-cyclotron anisotropy instabilities, J. Geophys. Res., 97, 8519, 1992.

    Article  Google Scholar 

  • Gary, S. P. and W. A. Feldman, Solar wind heat flux regulation by the whistler instability, J. Geophys. Res., 82, 1087–1094, 1997.

    Article  Google Scholar 

  • Gary, S. P. and C. D. Madland, Electromagnetic electron temperature anisotropy instabilities, J. Geophys. Res., 90, 7607–7610, 1985.

    Article  Google Scholar 

  • Gary, S. P., S. A. Fuselier, and B. J. Anderson, Ion anisotropy instabilities in the magnetosheath, J. Geophys. Res., 98, 1981, 1993.

    Google Scholar 

  • Helliwell, R. A., Whistler and related ionospheric phenomena, pp. 255–305, Stanford University Press, Stanford, Calif., 1965.

    Google Scholar 

  • Helliwell, R. A., A theory of discrete VLF emissions from the magnetosphere, J. Geophys. Res., 72, 4773, 1967.

    Article  Google Scholar 

  • Kennel, C. F., F. L. Scarf, F. V. Coroniti, R. W. Freder Icks, D. A. Gurnett, and E. J. Smith, Correlated whistler and electron plasma oscillation bursts detected on ISEE3, Geophys. Res. Lett., 7, 129–132, 1980.

    Article  Google Scholar 

  • Kennel, C. F., F. V. Coroniti, and F. L. Scarf, Plasma waves in magnetotail flux ropes, J. Geophys. Res., 91, 1424–1438, 1986.

    Article  Google Scholar 

  • Kimura, I. and T. Matsuo, Wave normal direction of auroral hiss observed by the S-310A-5 rocket, Memoirs of the National Institute of Polar Research, Tokyo Special Issue No. 22, pp. 185–195, 1982.

  • Korth, A., G. Kremser, S. Peraut, and A. Roux, Interaction of particles with Ion-Cyclotron waves and magnetosonic waves, observations from GEOS1 and GEOS2, Planet, Space Sci., 32, 1393, 1984.

    Article  Google Scholar 

  • LaBelle, J. and R. A. Treumann, Plasma waves at the dayside magnetopause, Space Science Reviews, 47, 175–202, 1988.

    Article  Google Scholar 

  • Lalmani, M. K. B., R. Kumar, R. Singh, and A. K. Gwal, Expemely small dispersion whistlers and VLF emissions recorded during day time at Jammu, Indian J. Radio 8 Space Phys., 28, 216, 1999.

    Google Scholar 

  • Lalmani, M. K. B., R. Kumar, R. Singh, and A. K. Gwal, An explanation of day time discrete VLF emissions observed at Jammu (L = 1.17) and determination of magnetosphereic parameters, Indian J. Phys., 74 B(2), 117, 2000.

    Google Scholar 

  • Lindqvist, P. A. and F. S. Mozer, The average tangential electric field at the noon manetopause parameters, J. Geophys. Res., 95, 17137, 1990.

    Article  Google Scholar 

  • Lyu, L. H. and J. R. Kan, Ion leakage, Ion reflection, Ion heating and shock reformation in a simulated supercritical quasi-parallel collisionless shock, Geophys. Res. Lett., 17, 1041, 1990.

    Article  Google Scholar 

  • Maynard, N. C., W. J. Burke, and G. R. Wilson, Solar wind control of the penetration of lectric fields in the inner magnetosphere, Adv. Space. Res., 25(7/8), 1393–1396, 2000.

    Article  Google Scholar 

  • Misra, K. D. and T. Haile, Effect of a-c. electric field on the whistler mode instability in the magnetosphere, J. Geophys. Res., 98, 9297, 1993.

    Article  Google Scholar 

  • Misra, K. D. and R. S. Pandey, Generation of whistler emissions by injection of hot electrons in the presence of a perpendicular a-c electric field J. Geophys. Res., 100, 19405–19411, 1995.

    Article  Google Scholar 

  • Misra, K. D. and B. D. Singh, On the modification of the whistler mode instability in the magnetosphere in the presence of a parallel electric field by cold plasma a injection, J. Geophys. Res., 85, 5138, 1980.

    Article  Google Scholar 

  • Misra, K. D. and B. D. Singh, Electric field induced instability in the magnetosphere, J. Geophys. Res., 82, 2267, 1977.

    Article  Google Scholar 

  • Misra, K. D., B. D. Singh, and S. P. Mishra, Effects of parallel electric field on whistler mode instability in the magnetosphere, J. Geophys. Res., 84, 5923, 1979.

    Article  Google Scholar 

  • Mozer, F. S., R. B. Torbert, U. V. Fahleson, C. Falthammer, A. Gonfalone, A. Pedssen, and C. T. Russel, Electric field measurements in the solar wind bow shock, magnetosphere, magnetopause and magnetosphere, Space Sci. Rev., 22, 794, 1978.

    Article  Google Scholar 

  • Pantellini, F. G., E. A. Heron, J. C. Adam, and A. Mangeney, The role of the whistler precursor during the electric reformation of a quasi-parallel shock, J. Geophys. Res., 97, 1303–1311, 1992.

    Article  Google Scholar 

  • Rycroft, M. J., VLF emissions in magnetosphere, Radio Sci., 7, 811–830, 1972.

    Article  Google Scholar 

  • Sazhin, S., Oblique whistler mode growth rate and damping in a hot anisotropic plasma, Planet, Space Sci., 36, 1111–1119, 1988.

    Article  Google Scholar 

  • Sazhin, S., whistler-mode waves in a hot plasma, Cambridge atmosphereic and space science series, Cambridge Univ. Press, New York, 1993.

    Google Scholar 

  • Shah, H. M., D. S. Hall, and C. P. Chaloner, The electron experiment on the AMPTE UKS, IEEE Trasaction on Geoscience and Remote sensing, GE-23, 292–300, 1985.

    Google Scholar 

  • Smith, C. W., H. K. Wong, and M. L. Goldstein, Whistler waves associated with the uranian bow shock: out bound observation, J. Geophys. Res., 96, 15841–15852, 1991.

    Article  Google Scholar 

  • Thomas, V. A., D. Winske, and N. Omidi, Reforming supercritical quasiparallel shocks, 1, one and two dimensional simulations, J. Geophys. Res., 95, 18809, 1990.

    Article  Google Scholar 

  • Tsurutani, B. T., E. J. Smith, R. M. Thorne, R. R. Anderson, D. A. Gurnett, G. K. Parks, C. S. Lin, and C. T. Russel, Wave particle interaction at the magnetopause: Contribution to the dayside aurora, Geophys. Res. Lett., 8, 183–186, 1981.

    Article  Google Scholar 

  • Tsurutani, B. T., A. L. Brinca, E. J. Smith, R. T. Okida, R. R. Anderson, and T. E. Eastmen, A statistical study of ELF-VLF plasma waves at magnetopause, J. Geophys. Res., 79, 118–127, 1989.

    Article  Google Scholar 

  • Ward, A. K., D. A. Bryant, T. Edwards, D. J. Parker, A. Ohea, T. J. Patrick, P. H. Sheather, K. P. Barnsdala, and A. M. Cruise, The AMNPTE-UKS space craft, IEEE Transactions on Geoscience and Remote sensing, GE-23, 202–211, 1985.

    Article  Google Scholar 

  • Winske, D., N. Omidi, K. B. Quest, and V. A. Thomas, Reforming supercritical quasi-parallel shocks, 2, Mechanism for wave generation and front reformation, J. Geophys. Res., 95, 18821, 1990.

    Article  Google Scholar 

  • Wong, H. K. and C. W. Smith, Electron beam excitation of upstream waves in the whistler mode frequency range, J. Geophys. Res., 99, 13373–13387, 1994.

    Article  Google Scholar 

  • Wygant, J. R., M. Bensadoum, and F. S. Mozer, Electric field measurements at sub-critical, oblique bow shock crossings, J. Geophys. Res., 92, 11, 109, 1987.

    Google Scholar 

  • Zhang, Y. L., H. Matsumoto, and Y. Omura, Linear and non-linear interactions of an electron beam with oblique whistler and electrostatic waves in the magnetosphere, J. Geophys. Res., 98, 21353–21363, 1993.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pandey, R.S., Misra, K.D. Excitation of oblique whistler waves in magnetosphere and in interplanetary space at 1 A.U.. Earth Planet Sp 54, 159–165 (2002). https://doi.org/10.1186/BF03351716

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351716

Keywords

  • Solar Wind
  • Plasma Parameter
  • Background Plasma
  • Temperature Anisotropy
  • Whistler Wave