Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

A self-similar solution of expanding cylindrical flux ropes for any polytropic index value

Abstract

We found a new class of solutions for MHD equations that satisfies the condition that cylindrical flux ropes can expand self-similarly even when the polytropic index γ is larger than 1. We achieved this by including the effects of elongation along the symmetry axis as well as radial expansion and assuming that the radial expansion rate is the same as the elongation rate. In previous studies (Osherovich et al., 1993a, 1995), a class of self-similar solutions was described for which cylindrical flux ropes expand only in the medium where γ is less than 1. We compare the models including elongation and excluding elongation observationally by using the WIND key parameters. The difference in the fitting results of the magnetic field between these two models is slight. However the fitting of the velocity is improved when elongation is included and when new geometric parameters that are necessary to represent the elongation are introduced. The values of these parameters are almost the same scale as the radius of flux ropes, which is consistent with the assumption of the isotropic expansion. This new exact solution to a time-dependent two-dimensional MHD problem can also be used to test numerical codes.

References

  1. Berdichevsky, D. B., R. P. Lepping, and C. J. Farrugia, On geometric considerations of the evolution of magnetic flux reopes, Phys. Rev. Lett., 2002 (submitted)

  2. Bernstein, I. B. and R. M. Kulsrud, On the explosion of a supernova into the interstellar magnetic field. I, Astrophys. J., 142, 479–490, 1965.

    Article  Google Scholar 

  3. Burlaga, L. F., Magnetic clouds and force-free fields with constant alpha, J. Geophys. Res., 93, 7217–7224, 1988.

    Article  Google Scholar 

  4. Burlaga, L., E. Sittler, F. Mariani, and R. Schwenn, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations, J. Geophys. Res., 86, 6673–6684, 1981.

    Article  Google Scholar 

  5. Cargill, P. J., J. Chen, D. S. Spicer, and S. T. Zalesak, Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma, J. Geophys. Res., 101, 4855–4870, 1996.

    Article  Google Scholar 

  6. Chen, J., Theory of prominence eruption and propagation: Interplanetary consequences, J. Geophys. Res., 101, 27,499–27,519, 1996.

    Article  Google Scholar 

  7. Chen, J. and D. A. Garren, Interplanetary magnetic clouds: Topology and driving mechanism, Geophys. Res. Lett., 20, 2319–2322, 1993.

    Article  Google Scholar 

  8. Farrugia, C. J., L. F. Burlaga, V. A. Osherovich, and R. P. Lepping, A comparative study of dynamically expanding force-free, constant-alpha magnetic configurations with applications to magnetic clouds, in Solar Wind Seven, edited by E. Marsch and R. Schwenn, COSPAR, vol. 3, pp. 611–614, Pergamon, New York, 1992.

    Google Scholar 

  9. Farrugia, C. J., L. F. Burlaga, V. A. Osherovich, I. G. Richardson, M. P. Freeman, R. P. Lepping, and A. J. Lazarus, A study of an expanding interplanetary magnetic cloud and its interaction with the earth’s magnetosphere: The interplanetary aspect, J. Geophys. Res., 98, 7621–7632, 1993.

    Article  Google Scholar 

  10. Gibson, S. E. and B. C. Low, A time-dependent three-dimensional magnetohydrodynamic model of the coronal mass ejection, Astrophys. J., 493, 460–473, 1998.

    Article  Google Scholar 

  11. Goldstein, H., On the field configuration in magnetic clouds, Solar Wind Five, NASA Conf. Publ., 2280, 731–733, 1983.

    Google Scholar 

  12. Gosling, J. T., On the determination of electron polytrope indices within coronal mass ejections in the solar wind, J. Geophys. Res., 104, 19,851–19,857, 1999.

    Article  Google Scholar 

  13. Gosling, J. T., P. Riley, and R. M. Skoug, Reply, J. Geophys. Res., 106, 3709–3713, 2001.

    Article  Google Scholar 

  14. Kulsrud, R. M., I. B. Bernstein, M. Kruskal, J. Fanucci, and N. Ness, On the explosion of a supernova into the interstellar magnetic field. II, Astrophys. J., 142, 491–506, 1965.

    Article  Google Scholar 

  15. Kumar, A., and D. M. Rust, Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes, J. Geophys. Res., 101, 15,667–15,684, 1996.

    Article  Google Scholar 

  16. Larson, D. E., R. P. Lin, J. M. McTiernan, J. P. McFadden, R. E. Ergun, M. McCarthy, H. Rème, T. R. Sanderson, M. Kaiser, R. P. Lepping, and J. Mazur, Tracing the topology of the October 18–20, 1995, magnetic cloud with ~0.1–102 keV electrons, Geophys. Res. Lett., 24, 1911–1914, 1997.

    Article  Google Scholar 

  17. Lepping, R. P., J. A. Jones, and L. F. Burlaga, Magnetic field structure of interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 95, 11,957–11,965, 1990.

    Article  Google Scholar 

  18. Lepping, R. P., M. H. Acũna, L. F. Burlaga, W. M. Farrell, J. A. Slavin, K. H. Schatten, F. Mariani, N. F. Ness, F. M. Neubauer, Y. C. Whang, J. B. Byrnes, R. S. Kennon, P. V. Panetta, J. Scheifele, and E. M. Worley, The WIND magnetic field investigation, Space Sci. Rev., 71, 207–229, 1995.

    Article  Google Scholar 

  19. Low, B. C., Self-similar magnetohydrodynamics. I. The γ = 4/3 polytrope and the coronal transient, Astrophys. J., 254, 796–805, 1982.

    Article  Google Scholar 

  20. Marubashi, K., Structure of the interplanetary magnetic clouds and their solar origins, Adv. Space Res., 6(6), 335–338, 1986.

    Article  Google Scholar 

  21. Marubashi, K., Interplanetary magnetic flux ropes and solar filaments, in Coronal Mass Ejections (Geophysical monograph 99), edited by N. Crooker, J. A. Joselyn, and J. Feynman, pp. 147–156, American Geophysical Union, Washington, D.C., 1997.

    Google Scholar 

  22. Odstrčil, D. and V. J. Pizzo, Three-dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow 1. CME launched within the streamer belt, J. Geophys. Res., 104, 483–492, 1999.

    Article  Google Scholar 

  23. Ogilvie, K. W., D. J. Chornay, R. J. Fritzenreiter, F. Hunsaker, J. Keller, J. Lobell, G. Miller, J. D. Scudder, E. C. Sittler, Jr., R. B. Torbert, D. Bodet, G. Needell, A. J. Lazarus, J. T. Steinberg, J. H. Tappan, A. Mavretic, and E. Gergin, SWE, a comprehensive plasma instrument for the WIND spacecraft, Space Sci. Rev., 71, 55–77, 1995.

    Article  Google Scholar 

  24. Osherovich, V., Comment on “On the determination of electron polytrope indices within coronal mass ejections in the solar wind”, J. Geophys. Res., 106, 3703–3707, 2001.

    Article  Google Scholar 

  25. Osherovich, V. A., C. J. Farrugia, and L. F. Burlaga, Nonlinear evolution of magnetic flux ropes 1. Low-beta limit, J. Geophys. Res., 98, 13,225–13,231, 1993a.

    Article  Google Scholar 

  26. Osherovich, V. A., C. J. Farrugia, L. F. Burlaga, R. P. Lepping, J. Fainberg, and R. G. Stone, Polytropic relationship in interplanetary magnetic clouds, J. Geophys. Res., 98, 15,331–15,342, 1993b.

    Article  Google Scholar 

  27. Osherovich, V. A., C. J. Farrugia, and L. F. Burlaga, Nonlinear evolution of magnetic flux ropes 2. Finite beta plasma, J. Geophys. Res., 100, 12,307–12,318, 1995.

    Article  Google Scholar 

  28. Shimazu, H. and K. Marubashi, New method for detecting interplanetary flux ropes, J. Geophys. Res., 105, 2365–2373, 2000.

    Article  Google Scholar 

  29. Skoug, R. M., W. C. Feldman, J. T. Gosling, D. J. McComas, and C. W. Smith, Solar wind electron characteristics inside and outside coronal mass ejections, J. Geophys. Res., 105, 23,069–23,084, 2000a.

    Article  Google Scholar 

  30. Skoug, R. M., W. C. Feldman, J. T. Gosling, D. J. McComas, D. B. Reisenfeld, C. W. Smith, R. P. Lepping, and A. Balogh, Radial variation of solar wind electrons inside a magnetic cloud observed at 1 and 5 AU, J. Geophys. Res., 105, 27,269–27,275, 2000b.

    Article  Google Scholar 

  31. Tsurutani, B. T., W. D. Gonzalez, F. Tang, S. I. Akasofu, and E. J. Smith, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979), J. Geophys. Res., 93, 8519–8531, 1988.

    Article  Google Scholar 

  32. Vandas, M. and D. Odstrčil, Magnetic cloud evolution: A comparison of analytical and numerical solutions, J. Geophys. Res., 105, 12,605–12,616, 2000.

    Article  Google Scholar 

  33. Vandas, M., S. Fischer, M. Dryer, Z. Smith, and T. Detman, Simulation of magnetic cloud propagation in the inner heliosphere in two-dimensions 1. A loop perpendicular to the ecliptic plane, J. Geophys. Res., 100, 12,285–12,292, 1995.

    Article  Google Scholar 

  34. Vandas, M., S. Fischer, M. Dryer, Z. Smith, and T. Detman, Parametric study of loop-like magnetic cloud propagation, J. Geophys. Res., 101, 15,645–15,652, 1996.

    Article  Google Scholar 

  35. Wu, S. T., W. P. Guo, and M. Dryer, Dynamical evolution of a coronal streamer—flux rope system II. A self-consistent non-planar magnetohydrodynamic simulation, Solar Phys., 170, 265–282, 1997.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hironori Shimazu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shimazu, H., Vandas, M. A self-similar solution of expanding cylindrical flux ropes for any polytropic index value. Earth Planet Sp 54, 783–790 (2002). https://doi.org/10.1186/BF03351731

Download citation

Keywords

  • Solar Wind
  • Coronal Mass Ejection
  • Magnetic Cloud
  • Flux Rope
  • Interplanetary Space