Skip to main content

Dominance of toroidal oscillations in dawn/dusk sectors: A consequence of solar wind pressure variation

Abstract

The pressure variations in the solar wind produce the oscillations in surface currents at the magnetopause boundary in order to nullify the pressure imbalance. These currents introduce compressional variations in the magnetic field within the magnetosphere. The response of transverse field line oscillations to such changes in the magnetic field has been brought out in perfectly reflecting ionospheric conditions. The analysis clearly shows that the fundamental toroidal modes are dominant in the dawn and the dusk sectors as revealed by the statistical studies of pulsations observed by the satellite AMPTE/CCE (Anderson et al., 1990). It is traditionally believed that such oscillations are mainly driven by Kelvin-Helmholtz (K-H) instability (Anderson et al., 1990). Our analysis shows that the dominance of fundamental toroidal modes in the dawn and dusk sectors can also be explained in terms of response to impressed pressure impulses without invoking K-H instability. The analysis also shows that poloidal modes do not exhibit any longitudinal structures. These results are consistent with the observations (Anderson et al., 1990).

References

  • Allan, W., S. P. White, and E. M. Poulter, Magnetospheric coupling of hydromagnetic waves—initial results, Geophys. Res. Let., 12, 287, 1985.

    Article  Google Scholar 

  • Allan, W., E. M. Poulter, and S.P. White, Magnetospheric wave coupling in the magnetosphere-plasmapause effects on impulse-excited resonances, Planet. Sp. Sci., 34, 1189, 1986.

    Article  Google Scholar 

  • Anderson, B. J., M. J. Engebretson, S. P. Rounds, L. J. Zanetti, and T. A. Potemra, A statistical study of Pc3-5 pulsations observed by the AMPTE/CCE magnetic fields experiment 1. Occurrence distributions, J. Geophys. Res., 95, 10,495, 1990.

    Article  Google Scholar 

  • Baumjohann, W., H. Junginger, G. Haerendel, and O. H. Bauer, Resonant Alfvén waves excited by a sudden impulse, J. Geophys. Res., 89, 2765, 1984.

    Article  Google Scholar 

  • Chen, L. and A. Hasegawa, A theory of long-period magnetic pulsations-2. impulse excitation of surface eigenmode, J. Geophys. Res., 79, 1033, 1974.

    Article  Google Scholar 

  • Cummings, W. D., R. J. O’Sullivan, and P. J. Coleman, Standing Alfvén waves in the magnetosphere, J. Geophys. Res., 74, 778, 1969.

    Article  Google Scholar 

  • Dudley, D. G., Mathematical Foundations for Electromagnetic Theory, 99 pp., Institute of Electrical and Electronics Engineers, Inc., Newyork, 1994.

    Book  Google Scholar 

  • Dungey, J. W., Electrodynamics of the outer atmospheres, Rep., 69, Ions. Res. Lab. Pa. State Univ., University Park, 1954.

    Google Scholar 

  • Farrugia, C. J., M. P. Freeman, S. W. H. Cowley, D. J. Southwood, M. Lockwood, and A. Etemadi, Planet. Sp. Sci, 37, 589, 1989.

    Article  Google Scholar 

  • Fujita, S. and V. L. Patel, Eigenmode analysis of coupled magnetohydrodynamic oscillations in the magnetosphere, J. Geophys. Res., 97, 13,771, 1992.

    Google Scholar 

  • Fujita, S., M. Itonaga, and H. Nakata, Relationship between the Pi2 pulsations and the localized impulsive current associated with the current disruption in the magnetosphere, Earth Planets Space, 52, 267, 2000.

    Article  Google Scholar 

  • Fujita, S., T. Mizuta, M. Itonaga, A. Yoshikawa, and H. Nakata, Propagation properties of transient MHD impulses in the magnetosphere-ionosphere system: The 2D model of the Pi2 pulsations, Geophys. Res. Let., 28, 2161, 2001.

    Article  Google Scholar 

  • Itonaga, M., A. Yoshikawa, and K. Yumoto, One-dimensional transient response of the inner magnetosphere at the magnetic equator, 2. Analysis of waveform, J. Geomag. Geoelectr., 49, 49, 1997.

    Article  Google Scholar 

  • Lee, D.H., Dynamics of MHD wave propagation in the low-latitude magnetosphere, J. Geophys. Res., 101, 15,371, 1996.

    Article  Google Scholar 

  • Leonovich, A. S. and V. A. Mazur, Theory of transverse small-scale standing Alfvén waves in an axially symmetric magnetosphere, Planet. Sp. Sci, 41, 697, 1993.

    Article  Google Scholar 

  • Leonovich, A. S. and V. A. Mazur, A model equation for monochromatic standing Alfvén waves in the axially symmetric magnetosphere, J. Geophys. Res., 102, 11,443, 1997.

    Article  Google Scholar 

  • Mead, G. D., Deformation of the geomagnetic field by the solar wind, J. Geophys. Res., 69, 1181, 1964.

    Article  Google Scholar 

  • Nagata, T, S. Kokubun, and T. Ijima, Geomagnetically conjugate relationships of giant pulsations at Syowa Base, Antarctica, and Reykjavik, Iceland, J. Geophys. Res., 68, 4621, 1963.

    Article  Google Scholar 

  • Nakata, H., S. Fujita, A. Yoshikawa, M. Itonaga, and K. Yumoto, Ground magnetic perturbations associated with the standing toroidal mode oscillations in the magnetosphere-ionosphere system, Earth Planets Space, 52, 601, 2000.

    Article  Google Scholar 

  • Newton, R. S., D. J. Southwood, and W. J. Hughes, Damping of geomagnetic pulsations by the ionosphere, Planet. Sp. Sci., 26, 201, 1978.

    Article  Google Scholar 

  • Schulz, M. and L. J. Lanzerotti, Particle diffusion in radiation belts, Springer-Verlag, Berlin Heidelberg Newyork, 1974.

    Book  Google Scholar 

  • Sibeck, D. G., W. Baumjohann, and R. E. Lopez, Solar wind dynamic pressure variations and transient magnetospheric signatures, Geophys. Res. Let., 16, 13, 1989.

    Article  Google Scholar 

  • Singer, H. J., D. J. Southwood, R. J. Walker, and M. G. Kivelson, Alfvén wave resonances in a realistic magnetospheric magnetic field geometry, J. Geophys. Res., 86, 4589, 1981.

    Article  Google Scholar 

  • Sinha, A. K. and R. Rajaram, An analytic approach to toroidal eigen mode, J. Geophys. Res., 102, 17,649, 1997.

    Article  Google Scholar 

  • Southwood, D. J. and W. J. Hughes, Theory of hydromagnetic waves in the magnetosphere, Space Sci. Rev., 35, 301, 1983.

    Article  Google Scholar 

  • Southwood, D. J. and M. G. Kivelson, The hydromagnetic response of the magnetospheric cavity to changes in solar wind pressure, J. Geophys. Res., 95, 2301, 1990.

    Article  Google Scholar 

  • Sugiura, M., Evidence of low frequency hydromagnetic waves in the exosphere, J. Geophys. Res., 66, 4087, 1961.

    Article  Google Scholar 

  • Walker, A. D. M., Excitation of magnetohydrodynamic cavities in the magnetosphere, J. Atmos. Ter. Phys., 60, 1279, 1998.

    Article  Google Scholar 

  • Walker, A. D. M., Coupling between waveguide modes and field line resonances, J. Atmos. Ter Phys., 62, 799, 2000.

    Article  Google Scholar 

  • Yoshikawa, A. and M. Itonaga, Reflection of shear Alfvén waves at the ionosphere and the divergent Hall current, Geophys. Res. Let., 23, 101, 1996.

    Article  Google Scholar 

  • Yoshikawa, A., M. Itonaga, S. Fujita, H. Nakata, and K. Yumoto, Eigenmode analysis of field line oscillations interacting with the ionosphere-atmosphere-solid earth electromagnetic coupled system, J. Geophys. Res., 104, 28,437, 1999.

    Article  Google Scholar 

  • Zhu, X. M. and M. G. Kivelson, Global mode ULF oscillations in a magnetosphere with a monochromatic Alfvén velocity profile, J. Geophys. Res., 94, 1479, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Sinha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sinha, A.K., Rajaram, R. Dominance of toroidal oscillations in dawn/dusk sectors: A consequence of solar wind pressure variation. Earth Planet Sp 55, 93–104 (2003). https://doi.org/10.1186/BF03351736

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351736

Keywords

  • Solar Wind
  • Solar Wind Dynamic Pressure
  • Ionospheric Conductivity
  • Toroidal Mode
  • Driving Period