Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Separation of the geomagnetic variation field on the ground into external and internal parts using the spherical elementary current system method

Abstract

Traditionally the separation of the ground geomagnetic field variations into external and internal parts is carried out by applying methods using harmonic functions. However, these methods may require a separate field interpolation and extrapolation, can be computationally slow, and require a minimum wavelength to be specified to which the spatial resolution is limited globally. A novel method that utilizes elementary current systems can overcome these shortcomings. The basis is the fact that inside a domain free of current flow, the magnetic field can be continued to any selected plane in terms of equivalent currents. Two layers of equivalent currents, each composed of superposition of spherical elementary systems, are placed to reproduce the ground magnetic field: One above the surface of the Earth representing the field of ionospheric origin, and one below it representing the field caused by induced currents in the Earth. The method can be applied for single time steps and the solution of the associated underdetermined linear system is found to be fast and reliable when using singular value decomposition. The applicability of the method is evaluated using synthetic magnetic data computed from different ionospheric current models and associated image currents placed below the surface of the Earth. Following these tests, the method is applied to the measurements of Baltic Electromagnetic Array Research (BEAR) (June–July 1998). External and internal components of geomagnetic variations were computed for the entire measurement period. Also the adequacy of the sparser IMAGE magnetometer network for the full field separation was tested.

References

  1. Amm, O., Direct determination of the local ionospheric Hall conductance distribution from two-dimensional electric and magnetic field data: Application of the method using models of typical ionospheric situations, J. Geophys. Res., 100, 21473–21488, 1995.

    Article  Google Scholar 

  2. Amm, O., Improved electrodynamic modeling of an omega band and analysis of its current system, J. Geophys. Res., 101, 2677–2684, 1996.

    Article  Google Scholar 

  3. Amm, O., Ionospheric elementary current systems in spherical coordinates and their application, J. Geomag. Geoelectr., 49, 947–955, 1997.

    Article  Google Scholar 

  4. Amm, O. and A. Viljanen, Ionospheric disturbance magnetic field continuation from the ground to ionosphere using spherical elementary current systems, Earth Planets Space, 51, 431–440, 1999.

    Article  Google Scholar 

  5. Baldwin, R. and H. Frey, Magsat crustal anomalies for Africa: Dawn and dusk data differences and a combined data set, Phys. Earth Planet. Int., 67, 237–250, 1991.

    Article  Google Scholar 

  6. Berdichevsky, M. and M. Zhdanov, Advanced theory of deep geomagnetic sounding, Elsevier Science Publishers B.V., Netherlands, 408 pp., 1984.

    Google Scholar 

  7. Chapman, S. and J. Bartels, Geomagnetism, Vol. 2, Clarendon Press, Oxford, 1049 pp., 1940.

    Google Scholar 

  8. Egbert, G., Processing and interpretation of electromagnetic induction array data, Surv. Geophys., 23, 207–249, 2002.

    Article  Google Scholar 

  9. Engels, M., T. Korja, and BEAR Working Group, Multisheet modelling of the electrical conductivity structure in the Fennoscandian Shield, Earth Planets Space, 54, 559–573, 2002.

    Article  Google Scholar 

  10. Faynberg, E. B., Separation of the geomagnetic field into a normal and an anomalous part, Geomagn. Aeron., 15, 117–121, 1975.

    Google Scholar 

  11. Golovkov, V. P. and T. I. Zvereva, Separation of the magnetic field into external and internal parts at the surface of prolate spheroid, Geomagn. Aeron., 34, 851–854, 1995.

    Google Scholar 

  12. Haines, G. V., Spherical cap harmonic analysis, J. Geophys. Res., 90, 2583–2591, 1985.

    Article  Google Scholar 

  13. Häkkinen, L., T. I. Pulkkinen, H. Nevanlinna, R. Pirjola, and E. Tanskanen, Effects of induced currents on Dst and on magnetic variations at mid-latitude stations, J. Geophys. Res., 107, SMP 7–1–SMP 7–8, 2002.

    Google Scholar 

  14. Kallio, E., T. I. Pulkkinen, H. E. J. Koskinen, and A. Viljanen, Loading-unloading processes in the nightside ionosphere, J. Geophys. Res., 27, 1627–1630, 2000.

    Google Scholar 

  15. Korja, T., M. Engels, A. A. Zhamaletdinov, A. A. Kovtun, N. A. Palshin, M. Yu. Smirnov, A. Tokarev, V. E. Asming, L. L. Vanyan, I. L. Vardaniants, and the BEAR Working Group, Crustal conductivity in Fennoscandia—a compilation of a database on crustal conductance in the Fennoscandian Shield, Earth Planets Space, 54, 535–558, 2002.

    Article  Google Scholar 

  16. Langel, R. A., Global magnetic anomaly maps derived from POGO spacecraft data, Phys. Earth Planet. Int., 62, 208–230, 1990.

    Article  Google Scholar 

  17. Langel, R. A., The use of low altitude satellite data bases for modeling of core and crustal fields and the separation of external and internal fields, Surveys in Geophysics, 14, 31–87, 1993.

    Article  Google Scholar 

  18. Mersmann, U., W. Baumjohann, F. Küppers, and K. Lange, Analysis of an eastward electrojet by means of upward continuation of ground-based magnetometer data, J. Geophys., 45, 281–298, 1979.

    Google Scholar 

  19. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in FORTRAN: the art of scientific computing, 2nd ed., Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  20. Pulkkinen, A., O. Amm, A. Viljanen, and BEAR Working Group, Ionospheric equivalent current distributions determined with the method of spherical elementary current systems, J. Geophys. Res., 2002a (accepted).

  21. Pulkkinen, A., A. Thomson, E. Clarke, and A. McKay, April 2000 geomagnetic storm: ionospheric drivers of large geomagnetically induced currents, Annales Geophysicae, 2002b (accepted).

  22. Richmond, A. D. and W. Baumjohann, Three-dimensional analysis of magnetometer array data, J. Geophys., 54, 138–156, 1983.

    Google Scholar 

  23. Rubin, Yu. R., Separation of the variations of the Earth’s magnetic field into parts corresponding to external and internal sources by a sliding smoothing filter, Geomagn. Aeron., 28, 294–296, 1988.

    Google Scholar 

  24. Siebert, M. and W. Kertz, Zur Zerlegung eines lokalen erdmagnetischen Feldes in äusseren und inneren Anteil, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. Act. IIa: 87–112, 1957.

  25. Tanskanen, E. I., A. Viljanen, T. I. Pulkkinen, R. Pirjola, L. Häkkinen, A. Pulkkinen, and O. Amm, At substorm onset, 40% of AL comes from underground, J. Geophys.Res., 106, 13119–13134, 2001.

    Article  Google Scholar 

  26. Untiedt, J. and W. Baumjohann, Studies of polar current systems using the IMS Scandinavian magnetometer array, Space Sci. Rev, 63, 245–390, 1993.

    Article  Google Scholar 

  27. Weaver, J. T., On the separation of Local Geomagnetic Fields into External and Internal Parts, Zeitschrift für Geophysik, 30, 29–36, 1964.

    Google Scholar 

  28. Weaver, J. T., Mathematical Methods for Geoelectromagnetic Induction, Research Studies Press Ltd., England, 316 pp., 1994.

    Google Scholar 

  29. Viljanen, A., K. Kauristie, and K. Pajunpää, On induction effects at EISCAT and IMAGE magnetometer stations, Geophys. J. Int., 121, 893–906, 1995.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Antti Pulkkinen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pulkkinen, A., Amm, O. & Viljanen, A. Separation of the geomagnetic variation field on the ground into external and internal parts using the spherical elementary current system method. Earth Planet Sp 55, 117–129 (2003). https://doi.org/10.1186/BF03351739

Download citation

Keywords

  • Singular Value Decomposition
  • Internal Part
  • Elementary System
  • Earth Planet Space
  • Ground Layer