Skip to main content

Were planetesimals formed by dust accretion in the solar nebula?

Abstract

The growth of meter-sized bodies in the solar nebula by dust accretion is examined. The meter-sized bodies have velocity about 50 m/s relative to the gas and small dust aggregates. When a small dust aggregate hits a meter-sized body, the aggregate breaks into dust monomers. These monomers accrete onto the body after several bouncing as proposed by Wurm et al., Icarus (2001), if the mean free path of the gas molecules is larger than the radius of the body. On the other hand, the monomers never hit the surface of the body again, if the body is much larger than the mean free path of the molecules. The sizes of bodies would be limited to the order of 10 times the mean free path. Kilometer-sized planetesimals were hardly formed by dust accretion in the region within 5 AU from the sun where the mean free path is less than 1 m. The planetesimals were probably formed by the gravitational instabilities in this region.

References

  • Adachi, I., C. Hayashi, and K. Nakazawa, The gas drag effect on the elliptic motion of a solid body in the primordial solar nebula, Progr. Theor. Phys., 56, 1756–1771, 1976.

    Article  Google Scholar 

  • Barge, P. and J. Sommeria, Did planet formation begin inside persistent gaseous vortices?, Astron. Astrophys., 295, L1–L4, 1995.

    Google Scholar 

  • Blum, J. and G. Wurm, Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates, Icarus, 143, 138–146, 2000.

    Article  Google Scholar 

  • Blum, J., G. Wurm, S. Kempf, and T. Henning, The Brownian motion of dust particles in the solar nebula: An experimental approach to the problem of preplanetary dust aggregation, Icarus, 124, 441–451, 1996.

    Article  Google Scholar 

  • Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods, 512 pp., Wiley, New York, 1987.

    Google Scholar 

  • Chambers, J. E. and G. W. Wetherill, Planets in the asteroid belt, Meteorit. Planet. Sci., 36, 381–399, 2001.

    Article  Google Scholar 

  • Chavanis, P. H., Trapping of dust by coherent vortices in the solar nebula, Astron Astrophys., 356, 1089–1111, 2000.

    Google Scholar 

  • Coradini, A., C. Federico, and G. Magni, Formation of planetesimals in an evolving protoplanetary disk, Astron. Astrophys, 98, 173–185, 1981.

    Google Scholar 

  • Cuzzi, J. N., A. R. Dobrovolskis, and J. M. Champney, Particle-gas dynamics in the midplane of a protoplanetary nebula, Icarus, 106, 102–134, 1993.

    Article  Google Scholar 

  • Dominik, C. and A. G. G. M. Tielens, The physics of dust coagulation and the structure of dust aggregates in space, Astrophys. J., 480, 647–673, 1997.

    Article  Google Scholar 

  • Gammie, C. F., Layered accretion in T Tauri disks, Astrophys. J., 457, 355–362, 1996.

    Article  Google Scholar 

  • Godon, P. and M. Livio, The formation and role of vortices in protoplanetary disks, Astrophys. J., 537, 396–404, 2000.

    Article  Google Scholar 

  • Goldburg, A. and B. H. Florsheim, Transition and Strouhal number for the incompressible wake of various bodies, Phys. Fluids, 9, 45–50, 1966.

    Article  Google Scholar 

  • Goldreich, P. and W. R. Ward, The formation of planetesimals, Astrophys. J., 183, 1051–1061, 1973.

    Article  Google Scholar 

  • Hayashi, C., Structure of the solar nebula, growth and decay of magnetic fields, and effects of magnetic and turbulent viscosities on the nebula, Progr. Theor. Phys. Suppl, 70, 35–53, 1981.

    Article  Google Scholar 

  • Hayashi, C., K. Nakazawa, and Y. Nakagawa, Formation of the solar system, in Protostars and Planets II, edited by D. C. Black and M. S. Matthews, pp. 1100–1153, Univ. of Arizona Press, Tucson, 1985.

    Google Scholar 

  • Heim, L.-O., J. Blum, M. Preuss, and H.-J. Butt, Adhesion and friction forces between spherical micrometer-sized particles, Phys. Rev. Lett., 83, 3328–3331, 1999.

    Article  Google Scholar 

  • Ishitsu, N. and M. Sekiya, The effects of the tidal force on the shear instabilities in the dust layer of the solar nebula, Icarus, 2003 (in press).

  • Kalro, V. and T. Tezduyar, 3D computation of unsteady flow past a sphere with a parallel finite element method, Comput. Methods in Appl. Mech. Engrg., 151, 267–276, 1998.

    Article  Google Scholar 

  • Klahr, H. H. and P. Bodenheimer, Turbulence in accretion disks: Vorticity generation and angular momentum transport via the global baroclinic instability, Astrophys. J., 582, 869–892, 2003.

    Article  Google Scholar 

  • Lee, S., A numerical study of the unsteady wake behind a sphere in a uniform flow at moderate Reynolds numbers, Comp. Fluids, 29, 639–667, 2000.

    Article  Google Scholar 

  • Magarvey, R. H. and R. L. Bishop, Transition ranges for three-dimensional wakes, Can. J. Phys., 39, 1418–1422, 1961.

    Article  Google Scholar 

  • Marcos, C. D. and P. Barge, The effect of long-lived vortical circulation on the dynamics of dust particles in the mid-plane of a protoplanetary disc, Mon. Not. R. Astron. Soc., 323, 601–614, 2001.

    Article  Google Scholar 

  • Nakagawa, Y., M. Sekiya, and C. Hayashi, Settling and growth of dust particles in a laminar phase of a low-mass solar nebula, Icarus, 67, 375–390, 1986.

    Article  Google Scholar 

  • Nakamura, I., Steady wake behind a sphere, Phys. Fluids, 19, 5–8, 1976.

    Article  Google Scholar 

  • Poppe, T., J. Blum, and T. Henning, Analogous experiments on the stickiness of micron-sized preplanetary dust, Astrophys. J., 533, 454–471, 2000.

    Article  Google Scholar 

  • Rimon, Y. and S. I. Cheng, Numerical solution of a uniform flow over a sphere at intermediate Reynolds numbers, Phys. Fluids, 12, 949–959, 1969.

    Article  Google Scholar 

  • Safronov, V. S., Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets, Nauka, Moscow, [NASA Tech. Trans. F-677], 1969.

  • Sekiya, M., Gravitational instabilities in a dust-gas layer and formation of planetesimals in the solar nebula, Progr. Theor. Phys., 69, 1116–1130, 1983.

    Article  Google Scholar 

  • Sekiya, M., Quasi-equilibrium density distributions of small dust aggregations in the solar nebula, Icarus, 133, 298–309, 1998.

    Article  Google Scholar 

  • Shu, F. H., D. Johnstone, and D. Hollenbach, Photoevaporation of the solar nebula and the formation of the giant planets, Icarus, 106, 92–101, 1993.

    Article  Google Scholar 

  • Takeda, H., Drag on a gravitating body, Progr. Theor. Phys. Suppl., 96, 196–210, 1988.

    Article  Google Scholar 

  • Takeda, H., T. Matsuda, K. Sawada, and C. Hayashi, Drag on a gravitating sphere moving through a gas, Progr. Theor. Phys., 74, 272–287, 1985.

    Article  Google Scholar 

  • Taneda, S., Experimental investigation of the wake behind a sphere at low Reynolds numbers, J. Phys. Soc. Japan, 11, 1104–1108, 1956.

    Article  Google Scholar 

  • Tanga, P., A. Babiano, B. Dubrulle, and A. Provenzale, Forming planetesimals in vortices, Icarus, 121, 158–170, 1996.

    Article  Google Scholar 

  • Weidenschilling, S. J., Aerodynamics of solid bodies in the solar nebula, Mon. Not. Roy. Astron. Soc., 180, 57–70, 1977.

    Article  Google Scholar 

  • Weidenschilling, S. J., Dust to planetesimals: Settling and coagulation in the solar nebula, Icarus, 44, 172–189, 1980.

    Article  Google Scholar 

  • Weidenschilling, S. J., Evolution of grains in a turbulent solar nebula, Icarus, 60, 553–567, 1984.

    Article  Google Scholar 

  • Weidenschilling, S. J., The origin of comets in the solar nebula: A unified model, Icarus, 127, 290–306, 1997.

    Article  Google Scholar 

  • Weidenschilling, S. J. and J. N. Cuzzi, Formation of planetesimals in the solar nebula, in Protostars and Planets III, edited by E. H. Levy and J. I. Lunine, pp. 1031–1060, Univ. of Arizona Press, Tucson, 1993.

    Google Scholar 

  • Wetherill, G. W., An alternative model for the formation of the asteroids, Icarus, 100, 307–325, 1992.

    Article  Google Scholar 

  • Wurm, G., J. Blum, and J. E. Colwell, A new mechanism relevant to the formation of planetesimals in the solar nebula, Icarus, 151, 318–321, 2001a.

    Article  Google Scholar 

  • Wurm, G., J. Blum, and J. E. Colwell, Aerodynamical sticking of dust aggregates, Phys. Rev., E64, 46301–46309, 2001b.

    Google Scholar 

  • Youdin, A. N. and F. H. Shu, Planetesimal formation by gravitational instability, Astrophys. J., 580, 494–505, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Sekiya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sekiya, M., Takeda, H. Were planetesimals formed by dust accretion in the solar nebula?. Earth Planet Sp 55, 263–269 (2003). https://doi.org/10.1186/BF03351758

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351758

Key words

  • Planets
  • solar system
  • solar nebula
  • planetesimals