Skip to content
Open Access

Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preservation of geomagnetic secular variation in inclination during the last 30,000 years

  • Toshitsugu Yamazaki1Email author,
  • Abdelaziz L. Abdeldayem2 and
  • Ken Ikehara1
Earth, Planets and Space201455:BF03351766

Received: 4 February 2003

Accepted: 21 June 2003

Published: 20 June 2014


A rock-magnetic and paleomagnetic study was conducted on a sediment core of about 4.4 m long taken from the northeastern part of the Japan Sea. The core covers the last about 30 kyrs, which was dated by nineteen radiocarbon (14C) ages. Remanent magnetization is carried dominantly by magnetite. Reductive dissolution of magnetic minerals occurs between 1.2 and 1.6 m in depth (about 5–8 ka in age). A rapid downcore decrease of anhysteretic remanent magnetization (ARM) begins at the shallowest depth. Saturation isothermal remanent magnetization (SIRM) follows, and a decrease of magnetic susceptibility (k) takes place at the deepest. Within this zone, coercivity of natural remanent magnetization (NRM) and the ratios of ARM to k and SIRM to k also decreases with depth. These observations indicate that finer magnetic grains were lost earlier than larger grains. A decrease of S ratios, wasp-waisted hysteresis curves, and a deviation from a mixing trend of single-domain and multi-domain grains in a Day plot occur as the dissolution proceeds, which suggests that high coercivity minerals like hematite are more resistive to dissolution than low coercivity minerals like magnetite. The start of the dissolution at 1.2 m in depth is synchronous with increases in organic-carbon and total-sulfur contents, but the horizon does not coincide with the present Fe-redox boundary at about 0.02 m below the sediment-water interface. From low-temperature magnetometry, it is estimated that magnetites with maghemite skin are reduced to pure magnetites prior to dissolution. There is no evidence for precipitation of secondary magnetic phases and acquisition of chemical remanent magnetization (CRM). Neither pyrrhotite nor greigite was detected. Information of paleomagnetic directions have survived the reductive dissolution. Inclination variations of this core resembles closely to the secular variation records available around Japan. Well-dated records older than 10 ka are still very rare, and hence our new record could be useful for establishing regional secular variations.

Key words

Rock magnetismreduction diagenesisdissolutionsecular variationinclinationJapan Sea