Skip to main content

Diurnal nonmigrating tides in the tropical lower thermosphere

Abstract

A comparison is performed between monthly-mean nonmigrating diurnal tide wind components at 95 km derived from Upper Atmosphere Research Satellite (UARS) wind observations, the Middle Atmosphere Circulation Model at Kyushu University (MACMKU), and the Global Scale Wave Model (GSWM) driven by latent heating due to deep tropical convection. A degree of overall agreement is obtained in the sense that annual-mean spectra at 95 km indicate that the UARS data, MACMKU and GSWM all share the same nonmigrating tide components (eastward-propagating with zonal wavenumber s = −3; westward-propagating with s = 2; standing or zonally-symmetric with s = 0; DE3, DW2, D0) at about the same power level. In combination with the migrating tide these wave components give rise to significant longitude variability in the total diurnal tidal fields. Beyond the above model/measurement agreements, significant discrepancies remain between the latitudinal-seasonal structures delineated by models and observation. For MACMKU, some of these discrepancies may be related to the specifics of the convective parameterization that is employed. Significant work remains to better delineate tropospheric forcing mechanisms and nonlinear wave-wave interactions as sources for nonmigrating tides.

References

  1. Angelatsi Coll, M. and J. M. Forbes, Nonlinear interactions in the upper atmosphere: The s = 1 and s = 3 nonmigrating semidiurnal tides, J. Geophys. Res., 107(A8), 1157, doi:10.1029/2001JA900179, 2002.

    Article  Google Scholar 

  2. Chapman, S. and R. S. Lindzen, Atmospheric Tides: Thermal and Gravitational, 200 pp., Gordon and Breach, New York, 1970.

    Google Scholar 

  3. Ekanayake, E. M. P., T. Aso, and S. Miyahara, Background wind effect on propagation of nonmigrating diurnal tides in the middle atmosphere, J. Atmos. Solar-Terr. Phys., 59, 401–429, 1997.

    Article  Google Scholar 

  4. Forbes, J. M. and G. V. Groves, Diurnal propagating tides in the low-latitude middle atmosphere, J. Atmos. Terr. Phys., 49, 153–164, 1987.

    Article  Google Scholar 

  5. Forbes, J. M., M. E. Hagan, X. Zhang, and K. Hamilton, Upper atmosphere tidal oscillations due to latent heat release in thue tropical troposphere, Ann. Geophys., 15, 1165–1175, 1997.

    Article  Google Scholar 

  6. Forbes, J. M., X. Zhang, and M. E. Hagan, Simulations of diurnal tides due to tropospheric heating from the NCEP/NCAR Reanalysis Project, Geophys. Res. Lett., 28, 3851–3854, 2001.

    Article  Google Scholar 

  7. Forbes, J. M., X. Zhang, W. Ward, and E. R. Talaat, Nonmigrating diurnal tides in the thermosphere, J. Geophys. Res., 107(D23), 4322, doi:10.1029/2001JD001232, 2002.

    Article  Google Scholar 

  8. Grieger, N. et al., General circulation model results on migrating and non-migrating tides in the mesosphere and lower thermosphere. Part I: Comparison with observations, J. Atmos. Solar-Terr. Phys, 897–911, 2002.

  9. Hagan, M. E., Comparative effects of migrating solar sources on tidal signatures in the middle and upper atmosphere, J. Geophys. Res., 101, 21,213–21,222, 1996.

    Article  Google Scholar 

  10. Hagan, M. E. and J. M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 107(D24), doi:10.1029/2001JD001236, 4754, 2002.

    Article  Google Scholar 

  11. Hagan, M. E. and R. G. Roble, Modeling diurnal tidal variability with the NCAR TIME-GCM, J. Geophys. Res., 106, 24869–24882, 2001.

    Article  Google Scholar 

  12. Hagan, M. E., J. M. Forbes, and F. Vial, On modeling migrating solar tides, Geophys. Res. Lett., 22(8), 893–896, 1995.

    Article  Google Scholar 

  13. Hagan, M. E., C. McLandress, and J. M. Forbes, Diurnal tidal variability in the upper mesosphere and lower thermosphere, Ann. Geophys., 15, 1176–1186, 1997.

    Article  Google Scholar 

  14. Hagan, M. E., M. D. Burrage, J. M. Forbes, J. Hackney, W. J. Randel, and X. Zhang, GSWM-98: Results for migrating solar tides, J. Geophys. Res., 104, 6813–6827, 1999.

    Article  Google Scholar 

  15. Haurwitz, B., The geographical distribution of the solar semidiurnal pressure oscillation, Meteorol. Pap., 2(5), New York University, 1956.

  16. Haurwitz, B., The diurnal surface pressure oscillation, Archiv. Meteorol. Geophys. Biokl., A14, 361–379, 1965.

    Article  Google Scholar 

  17. Kattatov, B. et al., Dynamics of the mesosphere and lower thermosphere as seen by MF radars and the high resolution Doppler imager/UARS, J. Geophys. Res., 101, 10393–10404, 1996.

    Article  Google Scholar 

  18. Lieberman, R. S., Nonmigrating diurnal tides in the equatorial middle atmosphere, J. Atmos. Sci., 48, 1112–1123, 1991.

    Article  Google Scholar 

  19. Longuet-Higgins, M. S., The eigenfunctions of Laplace’s tidal equation over a sphere, Phil. Trans. Roy. Met. Soc. Lon., A262, 511–607, 1968.

    Article  Google Scholar 

  20. Manson, A. H., Y. Luo, and C. Meek, Global distributions of diurnal and semidiurnal tides: Observations from HRDI-UARS of the MLT region, J. Geophys. Res., 2003 (in press).

  21. McLandress, C., The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere. Part II: The role of tidal heating and zonal mean winds, J. Atmos. Sci., 59, 907–922, 2002.

    Article  Google Scholar 

  22. Miyahara, S. and Y. Miyoshi, Migrating and nonmigrating atmospheric tides simulated by a middle atmosphere general circulation model, Adv. Space Res., 20, 1201–1207, 1997.

    Article  Google Scholar 

  23. Miyahara, S., Y. Yoshida, and Y. Miyoshi, Dynamic coupling between the lower and upper atmosphere by tides and gravity waves, J. Atmos. Terr. Phys., 55, 1039–1053, 1993.

    Article  Google Scholar 

  24. Miyahara, S., Y. Miyoshi, and K. Yamashita, Variations of migrating and nonmigrating tides simulated by the middle atmosphere circulation model at Kyushu University, Adv. Space Res., 24, 1549–1558, 1999.

    Article  Google Scholar 

  25. Oberheide, J., M. E. Hagan, R. G. Roble, and D. Offermann, Sources of nonmigrating tides in the tropical middle atmosphere, J. Geophys. Res., 107(D21), 4567, doi:10.1029/2002JD002220, 2002.

    Article  Google Scholar 

  26. Talaat, E. R. and R. S. Lieberman, Nonmigrating diurnal tides in mesospheric and lower thermospheric winds and temperatures, J. Atmos. Sci., 56, 4073–4087, 1999.

    Article  Google Scholar 

  27. Tokioka, T. and I. Yagai, Atmospheric tides appearing in a global atmospheric general circulation model, J. Meteor. Soc. Japan, 65, 423–437, 1987.

    Google Scholar 

  28. Williams, C. R. and S. K. Avery, Diurnal nonmigrating tidal oscillations forced by deep convective clouds, J. Geophys. Res., 101, 4079–4091, 1996.

    Article  Google Scholar 

  29. Yagai, I., Nonmigrating thermal tides detected in data analysis and a general circulation model simulation, J. Geophys. Res., 94, 6341–6356, 1989.

    Article  Google Scholar 

  30. Yamashita, K., S. Miyahara, Y. Miyoshi, K. Kawano, and J. Ninomiya, Seasonal variation of non-migrating semidiurnal tide in the polar MLT region in a general circulation model, J. Atmos. Solar-Terr. Phys., 1083–1094, 2002.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Forbes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Forbes, J.M., Hagan, M.E., Miyahara, S. et al. Diurnal nonmigrating tides in the tropical lower thermosphere. Earth Planet Sp 55, 419–426 (2003). https://doi.org/10.1186/BF03351775

Download citation

Key words

  • Tides
  • nonmigrating
  • thermosphere
  • tropics