Skip to main content

Deformation and internal flow of a chondrule-precursor molten sphere in a shocked nebular gas

Abstract

Chondrule formation due to a nebular shock wave heating is considered. We calculate the apparent gravitational acceleration, internal flow, and deformation of a chondrule precursor molten sphere in the shocked nebular gas. The gravitational acceleration and the internal flow are caused by momentum flux of gas molecules incident on the surface of the sphere. The gravitational acceleration just behind the shock wave is 1.1 to 330 times the terrestrial one. The velocity of the internal flow reaches around 0.1 m s−1 for the pre-shock nebular gas density and the shock wave velocity are 10−6 kg m−3 and 8.7 km s−1, respectively, and then chondrule melt is stirred well by the flow. As a consequence, if there is oxygen heterogeneity in the precursor particle, it must be homogenized by the high speed circulative flow in the molten sphere within a few seconds. The momentum flux also deforms the sphere. The variation of the radius of the molten sphere due to the deformation is less than 1% of the original radius for mm-sized sphere when the sphere re-solidifies. Because we used the hydrodynamic solution with the linear approximation, the applicability of our result of the internal flow is restricted to some region of the parameter space of the shock velocity, the nebular gas density, radius and viscosity of chondrule melt sphere. For larger values of those parameters than typical ones, nonlinear calculations are needed, which is left for future works.

References

  1. Boss, A. P., A concise guide to chondrule formation models, in Chondrules and the Protoplanetary Disk, edited by R. H. Hewins, R. H. Jones, and E. R. D. Scott, pp. 257–263, Cambridge Univ. Press, Cambridge, 1996.

    Google Scholar 

  2. Boss, A. P., Possible rapid gas giant planet formation in the solar nebula and other protoplanetary disks, Astrophys. J., 536, L101–L104, 2000.

    Article  Google Scholar 

  3. Boss, A. P. and J. A. Graham, Clumpy disk accretion and chondrule formation, Icarus, 106, 168–178, 1993.

    Article  Google Scholar 

  4. Bottinga, Y. and D. G. Weill, The viscosity of magmatic silicate liquids: A model for calculation, Am. Jour. Sci., 272, 438–475, 1972.

    Article  Google Scholar 

  5. Ciesla, F. J. and L. L. Hood, The nebular shock wave model for chondrule formation: Shock processing in a particle-gas suspension, Icarus, 158, 281–293, 2002.

    Article  Google Scholar 

  6. Clayton, R. N., Oxygen Isotopes in meteorites, Annu. Rev. Earth Planet. Sci., 21, 115–149, 1993.

    Article  Google Scholar 

  7. Desch, S. J. and H. C. Connolly, A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules, Meteorit. Planet. Sci., 37, 183–207, 2002.

    Article  Google Scholar 

  8. Desch, S. J. and J. N. Cuzzi, The generation of lightning in the solar nebula, Icarus, 143, 87–105, 2000.

    Article  Google Scholar 

  9. Dunn, T., Oxygen diffusion in three silicate melts along the join diopside-anorthite, Geochim. Cosmochim. Acta, 46, 2293–2299, 1982.

    Article  Google Scholar 

  10. Gooding, J. L. and K. Keil, Relative abundances of chondrule primary textual types in ordinary chondrites and their bearing on conditions of chondrule formation, Meteoritics, 16, 17–43, 1981.

    Article  Google Scholar 

  11. Hewins, R. H. and P. M. Radomsky, Temperature conditions for chondrules formation, Meteoritics, 25, 309–318, 1990.

    Article  Google Scholar 

  12. Hiyagon, H., In situ analysis of oxygen isotopes and Fe/Mg ratios in olivine using SIMS: Preliminary results for an Allende chondrule, Antarct. Meteorite Res., 10, 249–274, 1997.

    Google Scholar 

  13. Hood, L. L., Thermal processing of chondrule and CAI precursors in plan-etesimal bow shocks, Meteorit. Planet. Sci., 33, 97–107, 1998.

    Article  Google Scholar 

  14. Hood, L. L. and M. Horanyi, Gas dynamic heating of chondrule precursor grains in the solar nebula, Icarus, 93, 259–269, 1991.

    Article  Google Scholar 

  15. Hood, L. L. and M. Horanyi, The nebular shock wave model for chondrule formation: One-dimensional calculations, Icarus, 106, 179–189, 1993.

    Article  Google Scholar 

  16. Hood, L. L. and D. A. Kring, Models for multiple heating mechanisms, in Chondrules and the Protoplanetary Disk, edited by R. H. Hewins, R. H. Jones, and E. R. D. Scott, pp. 265–276, Cambridge Univ. Press, Cambridge, 1996.

    Google Scholar 

  17. Horanyi, M. and S. Robertson, Chondrule formation in lightning discharges; Status of theory and experiment, in Chondrules and the Protoplanetary Disk, edited by R. H. Hewins, R. H. Jones, and E. R. D. Scott, pp. 303–310, Cambridge Univ. Press, Cambridge, 1996.

    Google Scholar 

  18. Iida, A., T. Nakamoto, H. Susa, and Y. Nakagawa, A shock heating model for chondrule formation in a protoplanetary disk, Icarus, 153, 430–450, 2001.

    Article  Google Scholar 

  19. Jones, R. H., T. Lee, H. C. Connolly, S. G. Love, and H. Shang, Formation of chondrules and CAIs: Theory vs. observations, in Protostars and Planets IV, edited by V. Mannings, A. P. Boss, and S. S. Russell, pp. 927–962, Univ. of Arizona Press, Tucson, 2000a.

    Google Scholar 

  20. Jones, R. H., J. M. Sazton, I. C. Lyon, and G. Turner, Oxygen isotopes in chondrules olivine and isolated olivine grains from the CO3 chondrite Allan Hills A77307, Meteorit. Planet. Sci., 35, 849–857, 2000b.

    Article  Google Scholar 

  21. King, T. B., The surface tension and structure of silicate slags, J. Soc. Glass Technol., 35, 241–259, 1951.

    Google Scholar 

  22. Kuebler, K. E. and H. Y. McSween, Sizes and masses of chondrules and Metal-Troilite grains in ordinary chondrites: Possible implications for nebular sorting, Icarus, 141, 96–106, 1999.

    Article  Google Scholar 

  23. Landau, L. D. and E. M. Lifshitz, Fluid Mechanics, 319 pp., Pergamon, Elmsford., 1959.

    Google Scholar 

  24. Liffman, K., The formation of chondrules via ablation, Icarus, 100, 608–620, 1992.

    Article  Google Scholar 

  25. Liffman, K. and M. J. I. Brown, The protostellar jet model of chondrule formation, in Chondrules and the Protoplanetary Disk, edited by R. H. Hewins, R. H. Jones, and E. R. D. Scott, pp. 285–302, Cambridge Univ. Press, Cambridge, 1996.

    Google Scholar 

  26. Miura, H., T. Nakamoto, and H. Susa, A shock wave heating model for chondrule formation: effects of evaporation and gas flows on silicate particles, Icarus, 160, 258–270, 2002.

    Article  Google Scholar 

  27. Podolak, M., D. Prialnik, T. E. Bunch, P. Cassen, and R. Reynolds, Secondary processing of chondrules and refractory inclusions (CAIs) by gas-dynamic heating, Icarus, 104, 97–109, 1993.

    Article  Google Scholar 

  28. Ruzmaikina, T. V. and W. H. Ip, Chondrule formation in radiative shock, Icarus, 112, 430–447, 1994.

    Article  Google Scholar 

  29. Sekiya, M. and T. Nakamura, Condition for the formation of the compound chondrules in the solar nebula, Proc. NIPR Symp. Antarct. Meteorites, 9, 208–217, 1996.

    Google Scholar 

  30. Sekiya, M., M. Uesugi, and T. Nakamoto, Flow in a liquid sphere moving with a hypersonic velocity in a rarefied gas, Progr. Theor. Phys., 109, 717, 2003.

    Article  Google Scholar 

  31. Shu, F. H., H. Shang, and T. Lee, Toward an astrophysical theory of chondrites, Science, 271, 1545–1552, 1996.

    Article  Google Scholar 

  32. Shu, F. H., H. Shang, A. E. Glassgold, and T. Lee, X-rays and fluctuating X-winds from protostars, Science, 277, 1475–1479, 1997.

    Article  Google Scholar 

  33. Shu, F. H., H. Shang, M. Gounelle, A. E. Glassgold, and T. Lee, The origin of chondrules and refractory inclusions in chondritic meteorites, Astrophys. J., 548, 1029–1050, 2001.

    Article  Google Scholar 

  34. Sorby, H., On the structure and origin of meteorites, Nature, 15, 495–498, 1877.

    Article  Google Scholar 

  35. Stacey, F. D., Physics of the earth, third edition, Brookfiled Press, Queensland, Australia, 1992.

    Google Scholar 

  36. Susa, H. and T. Nakamoto, On the maximal size of chondrules in shock wave heating model, Astrophys. J., 564, L57–L60, 2002.

    Article  Google Scholar 

  37. Tanaka, K. K., H. Tanaka, and K. Nakazawa, Shock heating due to accretion of a clumpy cloud onto a protoplanetary disk, Icarus, 134, 137–154, 1998.

    Article  Google Scholar 

  38. Tsuchiyama, A., H. Nagahara, and I. Kushiro, Volatilization of sodium from silicate melt spheres and its application to the formation of chondrules, Geochim. Cosmochim. Acta, 45, 1357–1367, 1981.

    Article  Google Scholar 

  39. Tsuchiyama, A., R. Shigeyoshi, T. Nakano, K. Uesugi, and S. Shirono, Three-dimensional shapes and internal structures of chondrules form the Allende meteorite by X-ray CT: high-speed rotation (abstract), Antarctic Meteorites XXVII, 168–170, National Institute of Polar Research, 2002.

  40. Watanabe, S., Behavior of dust grains in protoplanetary disks with bipolar outflows, Proceedings of the 27-th ISAS Lunar and Planetary Symposium, 83, 1994.

  41. Weidenschilling, S. J., F. Mazari, and L. L. Hood, The origin of chondrules at jovian resonances, Science, 279, 681–684, 1998.

    Article  Google Scholar 

  42. Weisberg, M. K., Barred olivine chondrules in ordinary chondrites, Journal Proc. Lunar Planet. Sci. Conf. 19th, E663-E678, 1987.

  43. Wood, J. A., On the formation of meteoritic chondrules by aerodynamic drag heating in the solar nebula, Earth Planet. Sci. Lett., 70, 11–26, 1984.

    Article  Google Scholar 

  44. Wood, J. A., Processing of chondritic and planetary material in spiral density waves in the nebula, Meteoritics Planet. Sci., 31, 641–645, 1996.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masayuki Uesugi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uesugi, M., Sekiya, M. & Nakamoto, T. Deformation and internal flow of a chondrule-precursor molten sphere in a shocked nebular gas. Earth Planet Sp 55, 493–507 (2003). https://doi.org/10.1186/BF03351783

Download citation

Key words

  • Meteorites
  • solar nebula
  • shock wave