Skip to main content


You are viewing the new article page. Let us know what you think. Return to old version

Article | Open | Published:

Deformation and internal flow of a chondrule-precursor molten sphere in a shocked nebular gas


Chondrule formation due to a nebular shock wave heating is considered. We calculate the apparent gravitational acceleration, internal flow, and deformation of a chondrule precursor molten sphere in the shocked nebular gas. The gravitational acceleration and the internal flow are caused by momentum flux of gas molecules incident on the surface of the sphere. The gravitational acceleration just behind the shock wave is 1.1 to 330 times the terrestrial one. The velocity of the internal flow reaches around 0.1 m s−1 for the pre-shock nebular gas density and the shock wave velocity are 10−6 kg m−3 and 8.7 km s−1, respectively, and then chondrule melt is stirred well by the flow. As a consequence, if there is oxygen heterogeneity in the precursor particle, it must be homogenized by the high speed circulative flow in the molten sphere within a few seconds. The momentum flux also deforms the sphere. The variation of the radius of the molten sphere due to the deformation is less than 1% of the original radius for mm-sized sphere when the sphere re-solidifies. Because we used the hydrodynamic solution with the linear approximation, the applicability of our result of the internal flow is restricted to some region of the parameter space of the shock velocity, the nebular gas density, radius and viscosity of chondrule melt sphere. For larger values of those parameters than typical ones, nonlinear calculations are needed, which is left for future works.


  1. Boss, A. P., A concise guide to chondrule formation models, in Chondrules and the Protoplanetary Disk, edited by R. H. Hewins, R. H. Jones, and E. R. D. Scott, pp. 257–263, Cambridge Univ. Press, Cambridge, 1996.

  2. Boss, A. P., Possible rapid gas giant planet formation in the solar nebula and other protoplanetary disks, Astrophys. J., 536, L101–L104, 2000.

  3. Boss, A. P. and J. A. Graham, Clumpy disk accretion and chondrule formation, Icarus, 106, 168–178, 1993.

  4. Bottinga, Y. and D. G. Weill, The viscosity of magmatic silicate liquids: A model for calculation, Am. Jour. Sci., 272, 438–475, 1972.

  5. Ciesla, F. J. and L. L. Hood, The nebular shock wave model for chondrule formation: Shock processing in a particle-gas suspension, Icarus, 158, 281–293, 2002.

  6. Clayton, R. N., Oxygen Isotopes in meteorites, Annu. Rev. Earth Planet. Sci., 21, 115–149, 1993.

  7. Desch, S. J. and H. C. Connolly, A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules, Meteorit. Planet. Sci., 37, 183–207, 2002.

  8. Desch, S. J. and J. N. Cuzzi, The generation of lightning in the solar nebula, Icarus, 143, 87–105, 2000.

  9. Dunn, T., Oxygen diffusion in three silicate melts along the join diopside-anorthite, Geochim. Cosmochim. Acta, 46, 2293–2299, 1982.

  10. Gooding, J. L. and K. Keil, Relative abundances of chondrule primary textual types in ordinary chondrites and their bearing on conditions of chondrule formation, Meteoritics, 16, 17–43, 1981.

  11. Hewins, R. H. and P. M. Radomsky, Temperature conditions for chondrules formation, Meteoritics, 25, 309–318, 1990.

  12. Hiyagon, H., In situ analysis of oxygen isotopes and Fe/Mg ratios in olivine using SIMS: Preliminary results for an Allende chondrule, Antarct. Meteorite Res., 10, 249–274, 1997.

  13. Hood, L. L., Thermal processing of chondrule and CAI precursors in plan-etesimal bow shocks, Meteorit. Planet. Sci., 33, 97–107, 1998.

  14. Hood, L. L. and M. Horanyi, Gas dynamic heating of chondrule precursor grains in the solar nebula, Icarus, 93, 259–269, 1991.

  15. Hood, L. L. and M. Horanyi, The nebular shock wave model for chondrule formation: One-dimensional calculations, Icarus, 106, 179–189, 1993.

  16. Hood, L. L. and D. A. Kring, Models for multiple heating mechanisms, in Chondrules and the Protoplanetary Disk, edited by R. H. Hewins, R. H. Jones, and E. R. D. Scott, pp. 265–276, Cambridge Univ. Press, Cambridge, 1996.

  17. Horanyi, M. and S. Robertson, Chondrule formation in lightning discharges; Status of theory and experiment, in Chondrules and the Protoplanetary Disk, edited by R. H. Hewins, R. H. Jones, and E. R. D. Scott, pp. 303–310, Cambridge Univ. Press, Cambridge, 1996.

  18. Iida, A., T. Nakamoto, H. Susa, and Y. Nakagawa, A shock heating model for chondrule formation in a protoplanetary disk, Icarus, 153, 430–450, 2001.

  19. Jones, R. H., T. Lee, H. C. Connolly, S. G. Love, and H. Shang, Formation of chondrules and CAIs: Theory vs. observations, in Protostars and Planets IV, edited by V. Mannings, A. P. Boss, and S. S. Russell, pp. 927–962, Univ. of Arizona Press, Tucson, 2000a.

  20. Jones, R. H., J. M. Sazton, I. C. Lyon, and G. Turner, Oxygen isotopes in chondrules olivine and isolated olivine grains from the CO3 chondrite Allan Hills A77307, Meteorit. Planet. Sci., 35, 849–857, 2000b.

  21. King, T. B., The surface tension and structure of silicate slags, J. Soc. Glass Technol., 35, 241–259, 1951.

  22. Kuebler, K. E. and H. Y. McSween, Sizes and masses of chondrules and Metal-Troilite grains in ordinary chondrites: Possible implications for nebular sorting, Icarus, 141, 96–106, 1999.

  23. Landau, L. D. and E. M. Lifshitz, Fluid Mechanics, 319 pp., Pergamon, Elmsford., 1959.

  24. Liffman, K., The formation of chondrules via ablation, Icarus, 100, 608–620, 1992.

  25. Liffman, K. and M. J. I. Brown, The protostellar jet model of chondrule formation, in Chondrules and the Protoplanetary Disk, edited by R. H. Hewins, R. H. Jones, and E. R. D. Scott, pp. 285–302, Cambridge Univ. Press, Cambridge, 1996.

  26. Miura, H., T. Nakamoto, and H. Susa, A shock wave heating model for chondrule formation: effects of evaporation and gas flows on silicate particles, Icarus, 160, 258–270, 2002.

  27. Podolak, M., D. Prialnik, T. E. Bunch, P. Cassen, and R. Reynolds, Secondary processing of chondrules and refractory inclusions (CAIs) by gas-dynamic heating, Icarus, 104, 97–109, 1993.

  28. Ruzmaikina, T. V. and W. H. Ip, Chondrule formation in radiative shock, Icarus, 112, 430–447, 1994.

  29. Sekiya, M. and T. Nakamura, Condition for the formation of the compound chondrules in the solar nebula, Proc. NIPR Symp. Antarct. Meteorites, 9, 208–217, 1996.

  30. Sekiya, M., M. Uesugi, and T. Nakamoto, Flow in a liquid sphere moving with a hypersonic velocity in a rarefied gas, Progr. Theor. Phys., 109, 717, 2003.

  31. Shu, F. H., H. Shang, and T. Lee, Toward an astrophysical theory of chondrites, Science, 271, 1545–1552, 1996.

  32. Shu, F. H., H. Shang, A. E. Glassgold, and T. Lee, X-rays and fluctuating X-winds from protostars, Science, 277, 1475–1479, 1997.

  33. Shu, F. H., H. Shang, M. Gounelle, A. E. Glassgold, and T. Lee, The origin of chondrules and refractory inclusions in chondritic meteorites, Astrophys. J., 548, 1029–1050, 2001.

  34. Sorby, H., On the structure and origin of meteorites, Nature, 15, 495–498, 1877.

  35. Stacey, F. D., Physics of the earth, third edition, Brookfiled Press, Queensland, Australia, 1992.

  36. Susa, H. and T. Nakamoto, On the maximal size of chondrules in shock wave heating model, Astrophys. J., 564, L57–L60, 2002.

  37. Tanaka, K. K., H. Tanaka, and K. Nakazawa, Shock heating due to accretion of a clumpy cloud onto a protoplanetary disk, Icarus, 134, 137–154, 1998.

  38. Tsuchiyama, A., H. Nagahara, and I. Kushiro, Volatilization of sodium from silicate melt spheres and its application to the formation of chondrules, Geochim. Cosmochim. Acta, 45, 1357–1367, 1981.

  39. Tsuchiyama, A., R. Shigeyoshi, T. Nakano, K. Uesugi, and S. Shirono, Three-dimensional shapes and internal structures of chondrules form the Allende meteorite by X-ray CT: high-speed rotation (abstract), Antarctic Meteorites XXVII, 168–170, National Institute of Polar Research, 2002.

  40. Watanabe, S., Behavior of dust grains in protoplanetary disks with bipolar outflows, Proceedings of the 27-th ISAS Lunar and Planetary Symposium, 83, 1994.

  41. Weidenschilling, S. J., F. Mazari, and L. L. Hood, The origin of chondrules at jovian resonances, Science, 279, 681–684, 1998.

  42. Weisberg, M. K., Barred olivine chondrules in ordinary chondrites, Journal Proc. Lunar Planet. Sci. Conf. 19th, E663-E678, 1987.

  43. Wood, J. A., On the formation of meteoritic chondrules by aerodynamic drag heating in the solar nebula, Earth Planet. Sci. Lett., 70, 11–26, 1984.

  44. Wood, J. A., Processing of chondritic and planetary material in spiral density waves in the nebula, Meteoritics Planet. Sci., 31, 641–645, 1996.

Download references

Author information

Correspondence to Masayuki Uesugi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Key words

  • Meteorites
  • solar nebula
  • shock wave