Skip to main content

Present-day slip-rate of Altyn Tagh Fault: Numerical result constrained by GPS data

Abstract

Geological and seismic evidence suggests that nearly two thirds of the convergence between India and Eurasia is accommodated by the crustal deformation of Asia. Two competing mechanisms were proposed to describe this accommodation: distributed crustal thickening and lateral extrusion along main faults. The kinematics of the Altyn Tagh Fault (ATF) is critical in determining the relative importance of these two mechanisms, inasmuch as the ATF slip-rates predicted by hypotheses of these competing mechanisms are very different. Using a finite element formalism to construct a thin-sheet model, we seek a velocity solution approaching the current kinematics of the ATF. The GPS data in the Tibetan Plateau and neighboring regions are employed as constraint conditions, in successive steps. The predicted velocity distribution near the ATF fits well to the observations, with overall standard deviations of 2.3 mm/yr and 2.8 mm/yr for the northward and eastward components, respectively. The inferred average slip-rate of the ATF is (7.4 ± 1) mm/yr, with some variation along the fault. The slip-rate estimate of the ATF reported in this paper supports the distributed crustal thickening hypothesis for the crustal deformation of the Tibetan Plateau.

References

  1. Argus, D. F. and M. B. Heflin, Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System, Geophys. Res. Lett., 22, 1973–1976, 1995.

    Article  Google Scholar 

  2. Avouac, J. P. and P. Tapponnier, Kinematic model of active deformation in Central Asia, Geophys. Res. Lett., 20, 895–898, 1993.

    Article  Google Scholar 

  3. Bendick, R., R. Bilham, J. Freymueller, K. Larson, and G. H. Yin, Geodetic evidence for a low slip rate in the Altyn Tagh fault system, Nature, 404, 69–72, 2000.

    Article  Google Scholar 

  4. Bird, P., Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting, Computers & Geo-sciences, 25, 383–394, 1999.

    Article  Google Scholar 

  5. CSBS (Chinese State Bureau of Seismology), The Altyn Tagh Active Fault System, Beijing: Seismology Publishing House, 319 pp., 1992.

  6. Ding, Z. Y., Y. Q. Yang, Z. X. Yao, and G. H. Zhang, A thin-skinned collisional model for the Taiwan orogeny, Tectonophysics, 332, 321–331, 2001.

    Article  Google Scholar 

  7. Flesh, L. M., A. J. Haines, and W. E. Holt, Dynamics of the India-Eurasia collision zone, J. Geophys. Res., 106(B8), 16435–16460, 2001.

    Article  Google Scholar 

  8. Hetzel, R., S. Niedermann, M. X. Tao, P. W. Kubik, S. Ivy-Ochs, B. Gao, and M. R. Strecker, Low slip rates and long-term preservation of geomorphic features in Central Asia, Nature, 417, 428–432, 2002.

    Article  Google Scholar 

  9. Houseman, G. and P. England, Crustal thickening versus lateral expulsion in the Indian-Asian continental collision, J. Geophys. Res., 98(B7), 12233–12249, 1993.

    Article  Google Scholar 

  10. Jackson, J., A. J. Haines, and W. E. Holt, The accommodation of Arabia-Eurasia plate convergence in Iran, J. Geophys. Res., 100, 15205–15219, 1995.

    Article  Google Scholar 

  11. Meriaux, A., P. Tapponnier, F. J. Ryerson, J. van der Woerd, C. Lasserre, X. W. Xu, R. Finkel, and M. Caffee, Large-scale strain patterns, great earthquake breaks, and late Pleistocene slip-rate along the Altyn Tagh Fault (China), EOS (Fall Meet. Suppl.), 79, 400, 1998.

    Google Scholar 

  12. Meyer, B., P. Tapponnier, Y. Guademer, G. Peltzer, S. M. Guo, and Z. T. Chen, Rate of left lateral movement along the easternmost segment of the Altyn Tagh fault, east of 96°E (China), Geophys. J. Int., 124, 29–44, 1996.

    Article  Google Scholar 

  13. Molnar, P. and P. Tapponnier, Cenozoic tectonics of Asia: effects of a continental collision, Science, 189, 419–426, 1975.

    Article  Google Scholar 

  14. Peltzer, G. and F. Saucier, Present-day kinematics of Asia derived from geological fault rates, J. Geophys. Res., 101(B12), 27943–27956, 1996.

    Article  Google Scholar 

  15. Peltzer, G., P. Tapponnier, and R. Armijo, Magnitude of Late-Quaternary left-lateral displacements along the north edge of Tibet, Science, 246, 1285–1289, 1989.

    Article  Google Scholar 

  16. Shen, Z. K., M. Wang, Y. X. Li, D. D. Jackson, A. Yin, D. N. Dong, and P. Fang, Crustal deformation along the Altyn Tagh fault system, western China, from GPS, J. Geophys. Res., 106(B12), 30607–30621, 2001.

    Article  Google Scholar 

  17. Tapponnier, P. and P. Molnar, Active faulting and tectonics of China, J. Geophys. Res., 82, 2905–2930, 1977.

    Article  Google Scholar 

  18. Tapponnier, P., Z. Q. Xu, F. Roger, B. Meyer, N. Aenaud, G. Wittlinger, and J. S. Yang, Oblique stepwise rise and growth of the Tibetan Plateau, Science, 294, 1671–1677, 2001.

    Article  Google Scholar 

  19. Wang, Q., P. Z. Zhang, J. T. Freymueller, R. Bilham, K. M. Larson, X. A. Lai, X. Z. You, Z. J. Niu, J. C. Wu, Y. X. Li, J. N. Liu, Z. Q. Yang, and Q. Z. Chen, Present-day crustal deformation in China constrained by GlobalPositioning System measurements, Science, 294, 574–577, 2001.

    Article  Google Scholar 

  20. Washburn, Z., J. R. Arrowsmith, S. L. Forman, E. Cowgill, X. Wang, Y. Zhang, and Z. Chen, Late Holocene earthquake history of the central Altyn Tagh fault, China, Geology, 29(11), 1051–1054, 2001.

    Article  Google Scholar 

  21. Yin, A. and T. M. Harrison, Geological evolution of the Himalayan-Tibetan Orogen, Annu. Rev. Earth Planet. Sci, 28, 211–80, 2000.

    Article  Google Scholar 

  22. Yin, A., X. Wang, T. M. Harrison, E. Cowgill, P. Rumelhart, Z. Shen, D. Jackson, G. Gehrels, R. Butler, D. Roberson, G. Dupont-Nivet, R. Arrowsmith, and F. Ryerson, Preliminary results from a collaborative geologic investigation of the Altyn Tagh Fault, North Tibet. in 14th Himalaya-Karakorum-Tibet Workshop, Abstract volume, 185–86. Germany: Kloster Ettal, 1999.

  23. Yue, Y. J., B. D. Ritts, and S. A. Graham, Initiation and long-term slip history of the Altyn Tagh Fault, International Geology Review, 43, 1087–1093, 2001.

    Article  Google Scholar 

  24. Yue, Y J., B. D. Ritts, S. A. Graham, J. L. Wooden, G. G. Gehrels, and Z. C. Zhang, Slowing extrusion tectonics: Lowered estimates of post-Early Miocene slip rate for the Altyn Tagh fault, Earth and Planet. Sci. Lett, 2003 (in press).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiong Xiong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Park, P., Zheng, Y. et al. Present-day slip-rate of Altyn Tagh Fault: Numerical result constrained by GPS data. Earth Planet Sp 55, 509–514 (2003). https://doi.org/10.1186/BF03351784

Download citation

Key words

  • Slip-rate
  • Altyn Tagh Fault
  • GPS observations
  • numerical simulation