Skip to main content


Present-day slip-rate of Altyn Tagh Fault: Numerical result constrained by GPS data

Article metrics

  • 272 Accesses

  • 6 Citations


Geological and seismic evidence suggests that nearly two thirds of the convergence between India and Eurasia is accommodated by the crustal deformation of Asia. Two competing mechanisms were proposed to describe this accommodation: distributed crustal thickening and lateral extrusion along main faults. The kinematics of the Altyn Tagh Fault (ATF) is critical in determining the relative importance of these two mechanisms, inasmuch as the ATF slip-rates predicted by hypotheses of these competing mechanisms are very different. Using a finite element formalism to construct a thin-sheet model, we seek a velocity solution approaching the current kinematics of the ATF. The GPS data in the Tibetan Plateau and neighboring regions are employed as constraint conditions, in successive steps. The predicted velocity distribution near the ATF fits well to the observations, with overall standard deviations of 2.3 mm/yr and 2.8 mm/yr for the northward and eastward components, respectively. The inferred average slip-rate of the ATF is (7.4 ± 1) mm/yr, with some variation along the fault. The slip-rate estimate of the ATF reported in this paper supports the distributed crustal thickening hypothesis for the crustal deformation of the Tibetan Plateau.


  1. Argus, D. F. and M. B. Heflin, Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System, Geophys. Res. Lett., 22, 1973–1976, 1995.

  2. Avouac, J. P. and P. Tapponnier, Kinematic model of active deformation in Central Asia, Geophys. Res. Lett., 20, 895–898, 1993.

  3. Bendick, R., R. Bilham, J. Freymueller, K. Larson, and G. H. Yin, Geodetic evidence for a low slip rate in the Altyn Tagh fault system, Nature, 404, 69–72, 2000.

  4. Bird, P., Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting, Computers & Geo-sciences, 25, 383–394, 1999.

  5. CSBS (Chinese State Bureau of Seismology), The Altyn Tagh Active Fault System, Beijing: Seismology Publishing House, 319 pp., 1992.

  6. Ding, Z. Y., Y. Q. Yang, Z. X. Yao, and G. H. Zhang, A thin-skinned collisional model for the Taiwan orogeny, Tectonophysics, 332, 321–331, 2001.

  7. Flesh, L. M., A. J. Haines, and W. E. Holt, Dynamics of the India-Eurasia collision zone, J. Geophys. Res., 106(B8), 16435–16460, 2001.

  8. Hetzel, R., S. Niedermann, M. X. Tao, P. W. Kubik, S. Ivy-Ochs, B. Gao, and M. R. Strecker, Low slip rates and long-term preservation of geomorphic features in Central Asia, Nature, 417, 428–432, 2002.

  9. Houseman, G. and P. England, Crustal thickening versus lateral expulsion in the Indian-Asian continental collision, J. Geophys. Res., 98(B7), 12233–12249, 1993.

  10. Jackson, J., A. J. Haines, and W. E. Holt, The accommodation of Arabia-Eurasia plate convergence in Iran, J. Geophys. Res., 100, 15205–15219, 1995.

  11. Meriaux, A., P. Tapponnier, F. J. Ryerson, J. van der Woerd, C. Lasserre, X. W. Xu, R. Finkel, and M. Caffee, Large-scale strain patterns, great earthquake breaks, and late Pleistocene slip-rate along the Altyn Tagh Fault (China), EOS (Fall Meet. Suppl.), 79, 400, 1998.

  12. Meyer, B., P. Tapponnier, Y. Guademer, G. Peltzer, S. M. Guo, and Z. T. Chen, Rate of left lateral movement along the easternmost segment of the Altyn Tagh fault, east of 96°E (China), Geophys. J. Int., 124, 29–44, 1996.

  13. Molnar, P. and P. Tapponnier, Cenozoic tectonics of Asia: effects of a continental collision, Science, 189, 419–426, 1975.

  14. Peltzer, G. and F. Saucier, Present-day kinematics of Asia derived from geological fault rates, J. Geophys. Res., 101(B12), 27943–27956, 1996.

  15. Peltzer, G., P. Tapponnier, and R. Armijo, Magnitude of Late-Quaternary left-lateral displacements along the north edge of Tibet, Science, 246, 1285–1289, 1989.

  16. Shen, Z. K., M. Wang, Y. X. Li, D. D. Jackson, A. Yin, D. N. Dong, and P. Fang, Crustal deformation along the Altyn Tagh fault system, western China, from GPS, J. Geophys. Res., 106(B12), 30607–30621, 2001.

  17. Tapponnier, P. and P. Molnar, Active faulting and tectonics of China, J. Geophys. Res., 82, 2905–2930, 1977.

  18. Tapponnier, P., Z. Q. Xu, F. Roger, B. Meyer, N. Aenaud, G. Wittlinger, and J. S. Yang, Oblique stepwise rise and growth of the Tibetan Plateau, Science, 294, 1671–1677, 2001.

  19. Wang, Q., P. Z. Zhang, J. T. Freymueller, R. Bilham, K. M. Larson, X. A. Lai, X. Z. You, Z. J. Niu, J. C. Wu, Y. X. Li, J. N. Liu, Z. Q. Yang, and Q. Z. Chen, Present-day crustal deformation in China constrained by GlobalPositioning System measurements, Science, 294, 574–577, 2001.

  20. Washburn, Z., J. R. Arrowsmith, S. L. Forman, E. Cowgill, X. Wang, Y. Zhang, and Z. Chen, Late Holocene earthquake history of the central Altyn Tagh fault, China, Geology, 29(11), 1051–1054, 2001.

  21. Yin, A. and T. M. Harrison, Geological evolution of the Himalayan-Tibetan Orogen, Annu. Rev. Earth Planet. Sci, 28, 211–80, 2000.

  22. Yin, A., X. Wang, T. M. Harrison, E. Cowgill, P. Rumelhart, Z. Shen, D. Jackson, G. Gehrels, R. Butler, D. Roberson, G. Dupont-Nivet, R. Arrowsmith, and F. Ryerson, Preliminary results from a collaborative geologic investigation of the Altyn Tagh Fault, North Tibet. in 14th Himalaya-Karakorum-Tibet Workshop, Abstract volume, 185–86. Germany: Kloster Ettal, 1999.

  23. Yue, Y. J., B. D. Ritts, and S. A. Graham, Initiation and long-term slip history of the Altyn Tagh Fault, International Geology Review, 43, 1087–1093, 2001.

  24. Yue, Y J., B. D. Ritts, S. A. Graham, J. L. Wooden, G. G. Gehrels, and Z. C. Zhang, Slowing extrusion tectonics: Lowered estimates of post-Early Miocene slip rate for the Altyn Tagh fault, Earth and Planet. Sci. Lett, 2003 (in press).

Download references

Author information

Correspondence to Xiong Xiong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Park, P., Zheng, Y. et al. Present-day slip-rate of Altyn Tagh Fault: Numerical result constrained by GPS data. Earth Planet Sp 55, 509–514 (2003) doi:10.1186/BF03351784

Download citation

Key words

  • Slip-rate
  • Altyn Tagh Fault
  • GPS observations
  • numerical simulation