Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Application of satellite magnetic observations for estimating near-surface magnetic anomalies

Abstract

Regional to continental scale magnetic anomaly maps are becoming increasingly available from airborne, shipborne, and terrestrial surveys. Satellite data are commonly considered to fill the coverage gaps in regional compilations of these near-surface surveys. For the near-surface Antarctic magnetic anomaly map being produced by the Antarctic Digital Magnetic Anomaly Project (ADMAP), we show that near-surface magnetic anomaly estimation is greatly enhanced by the joint inversion of the near-surface data with Ørsted satellite observations compared to Magsat data that have order-of-magnitude greater measurement errors, albeit collected at much lower orbital altitudes. The CHAMP satellite is observing the geomagnetic field with the same measurement accuracy as the Ørsted mission, but at the lower orbital altitudes covered by Magsat. Hence, additional significant improvement in predicting near-surface magnetic anomalies can result as lithospheric magnetic anomaly data from the CHAMP mission become available. Our analysis also suggests that a further order-of-magnitude improvement in the accuracy of the magnetometer measurements at minimum orbital altitude may reveal considerable new insight into the magnetic properties of the lithosphere.

References

  1. Alsdorf, D. E., R. R. B. von Frese, J. Arkani-Hamed, and H. C. Noltimier, Separation of lithospheric, external, and core components of the south polar geomagnetic field at satellite altitudes, J. Geophys. Res., 99, 4655–4667, 1994.

    Article  Google Scholar 

  2. Arkani-Hamed, J. and D. W. Strangway, Intermediate scale magnetic anomalies of the Earth, Geophysics, 50, 2817–2830, 1985.

    Article  Google Scholar 

  3. Arkani-Hamed, J., W. E. S. Urquhart, and D. W. Strangway, Scalar magnetic anomalies of Canada and northern United States derived from Magsat data, J. Geophys. Res., 90, 2599–2608, 1985.

    Article  Google Scholar 

  4. Arkani-Hamed, J., R. A. Langel, and M. Purucker, Magnetic anomaly maps of Earth derived from POGO and Magsat data, J. Geophys. Res., 99, 24,075–24,090, 1994.

    Google Scholar 

  5. Arkani-Hamed, J., J. Verhoef, W. Roest, and R. Macnab, The intermediate wavelength magnetic anomaly maps of the North Atlantic ocean derived from satellite and shipborne data, Geophys. J. Int., 123, 727–743, 1995.

    Article  Google Scholar 

  6. Briggs, I. C, Machine contouring using minimum curvature, Geophysics, 39, 39–48, 1974.

    Article  Google Scholar 

  7. Bentley, C. R., S. Shabtaie, C. S. Lingle and D. D. Blankenship, Analysis of geophysical data from Dome C and the Ross Ice Shelf, Antarctic Journal of U. S., 18, 104–105, 1983.

    Google Scholar 

  8. Cohen, Y. and J. Achache, New global vector magnetic anomaly maps derived from Magsat data, J. Geophys. Res., 95, 10783–10800, 1990.

    Article  Google Scholar 

  9. Dampney, C. N., The equivalent source technique, Geophysics, 45, 39–53, 1969.

    Article  Google Scholar 

  10. Foster, M. R. and N. J. Guinzy, The coefficient of coherence: Its estimation and use in geophysical prospecting, Geophysics, 32, 602–616, 1967.

    Article  Google Scholar 

  11. Golynsky, A., M. Chiappini, D. Damaske, F Ferraccioli, J. Ferris, C. Finn, M. Ghidella, T. Ishihara, A. Johnson, H. R. Kim, L. Kovacs, J. LaBrecque, V. Masolov, Y. Nogi, M. Purucker, P. Taylor, and M. Torta, ADMAP—Magnetic anomaly map of the Antarctic, 1:10,000,000 scale map, BAS (Misc) 10, 2002.

  12. Grauch, V. J. S., Limitations on digital filtering of the DNAG magnetic data set forthe conterminous U.S., Geophysics, 62, 1281–1296, 1993.

    Article  Google Scholar 

  13. Hildenbrand, T. G., R. J. Blakely, W. J. Hinze, R. Keller, R. A. Langel, M. Nabighian, and W. Roest, Aeromagnetic survey over U.S. to advance geomagnetic research, Eos, 77, 265, 268, 1996.

    Article  Google Scholar 

  14. Hunter, R. J., A. C. Johnson, and N. D. Aleshkova, Aeromagnetic data from the southern Weddell Sea embayment and adjacent areas: Synthesis and interpretation, in Geological Soceity Special Publication, edited by B. Story, E. C. King, and R. A. Livermore, Volume 108, pp. 143–154, The Geological Society, 1996.

    Article  Google Scholar 

  15. Kim, H. R., Antarctic lithospheric anomalies from Ørsted satellite and near-surface magnetic observations, Ph. D. thesis, The Ohio State University, Columbus, Ohio, pp. 160, 2002.

    Google Scholar 

  16. Kim, H. R., L. R. Gaya-Pique, R. R. B. von Frese, P. T. Taylor, and J. W. Kim, CHAMP magnetic anomalies of the Antarctic Crust, in Earth Observation with CHAMP: Results from Three Years in Orbit, edited by C. Reigber, H. Lühr, P. Schwintzer, and J. Wickert, Heidelberg: Springer-Verlag, pp. 261–266, 2004.

    Google Scholar 

  17. Kim, J.-H., Improved recovery of gravity anomalies from dense altimeter data, Ph. D. thesis, The Ohio State University, Columbus, Ohio, 1995.

    Google Scholar 

  18. Kleinschmidt, G. and W. Buggisch, Plate tectonic implications of the structure of the Shackleton Range, Antarctica, Polarforschung, 63, 9–32, 1994.

    Google Scholar 

  19. Ku, C. C., A direct computation of gravity and magnetic anomalies caused by 2- and 3-dimensional bodies of arbitrary shape and arbitrary magnetic polarization by equivalent point method and a simplified cubic spline, Geophysics, 42, 610–622, 1977.

    Article  Google Scholar 

  20. Langel, R. A., Global magnetic anomaly maps derived from POGO spacecraft data, Phys. Earth Planet. Int., 62, 208–230, 1990.

    Article  Google Scholar 

  21. Langel, R. A. and W. J. Hinze, The Magnetic Field of the Earth’s Lithosphere, Cambridge, New York, 1998.

    Google Scholar 

  22. Langel, R. A., J. D. Phillips, and R. J. Horner, Initial scalar magnetic anomaly map from Magsat, Geophys. Res. Lett., 9, 269–272, 1982.

    Article  Google Scholar 

  23. Li, Y and D. W. Oldenburg, Joint inversion of surface and three-component borehole magnetic data, Geophysics, 65, 540–552, 1999.

    Article  Google Scholar 

  24. Maus, S., M. Rother, R. Holme, H. Lühr, N. Olsen, and V. Haak, First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field, Geophys. Res. Lett., 29, 10.1029/2001GL013685, 2002.

  25. Mayhew, M. A., An equivalent layer magnetization model for the United States derived from satellite altitude magnetic anomalies, J. Geophys. Res., 87, 4837–4845, 1982.

    Article  Google Scholar 

  26. Olsen, N., T. Sabaka, and L. Tøffner Clausen, Determination of the IGRF 2000, Earth Planets Space, 52, 1175–1182, 2000.

    Article  Google Scholar 

  27. Olsen, N., E. Friis-Christensen, G. Hulot, M. Korte, A. Kuvshinov, V. Lesur, H. Lühr, S. Macmillan, M. Mandea, S. Maus, M. Purucker, C. Reigber, P. Ritter, M. Rother, T. Sabaka, P. Tarits, and A. Thomson, Swarm-End-to-End mission performance simulator study, DSRI Report 1/2004: ESA contract No. 17263/03/NL/CB, 2004.

    Google Scholar 

  28. Pilkington, M. and W. R. Roest, An assessment of long-wavelength magnetic anomalies over Canada, Can. J. Earth Sci., 31, 12–23, 1996.

    Article  Google Scholar 

  29. Purucker, M. E., T. J. Sabaka, and R. A. Langel, Conjugate gradient analysis: A new tool for studying satellite magnetic data sets, Geophys. Res. Lett., 23, 507–510, 1996.

    Article  Google Scholar 

  30. Ravat, D. N., W. J. Hinze, and R. R. B. von Frese, Lithospheric magnetic property contrasts within the South American plate derived from damped least-squares inversion of satellite magnetic data, Tectonophysics, 192, 159–168, 1991.

    Article  Google Scholar 

  31. Ravat, D. N., R. A. Langel, M. Purucker, J. Arkani-Hamed, and D. E. Alsdorf, Global vector and scalar Magsat magnetic anomaly maps, J. Geophys. Res., 100, 20111–20136, 1995.

    Article  Google Scholar 

  32. Ravat, D. N., M. Pilkington, M. Purucker, T. Sabaka, P. T. Taylor, R. R. B. von Frese, and K. A. Whaler, Recent advances in the verification and geologic intgerpretation of satellite-altitude magnetic anomalies, 68th Annual Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 507–510, 1998.

    Google Scholar 

  33. Ravat, D. N., K. A. Whaler, M. Pilkington, T. J. Sabaka, and M. Purucker, Compatibility of high-altitude aeromagnetic and satellite-altitude magnetic anomalies over Canada, Geophysics, 67, 546–554, 2002.

    Article  Google Scholar 

  34. Regan, R. D., J. C. Cain, and W. M. Davis, A global magnetic anomaly map, J. Geophys. Res., 80,794–802, 1975.

    Article  Google Scholar 

  35. Schnetzler, C. C, P. T. Taylor, R. A. Langel, W. J. Hinze, and J. D. Phillips, Comparison between the recent U.S. composite magnetic anomaly map and Magsat anomaly data, J. Geophys. Res., 90, 2543–2548, 1985.

    Article  Google Scholar 

  36. Sexton, J. L., W. J. Hinze, R. R. B. von Frese, and L. W. Braile, Long-wavelength aeromagnetic anomaly map of the conterminous United States, Geology, 10, 364–369, 1982.

    Article  Google Scholar 

  37. Smith, W. H. F. and P. Wessel, Gridding with continuous curvature splines in tension, Geophysics, 55, 293–305, 1990.

    Article  Google Scholar 

  38. Steed, R. H. C. and D. J. Drewry, Radio echo sounding investigations of Wilkes Land, Antarctica, pp. 969–975, Univ. of Wisconsin Press, Madison, 1982.

    Google Scholar 

  39. Stroud, A. H. and D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, NJ, 1966.

    Google Scholar 

  40. Taylor, P. T., J. J. Frawley, H. R. Kim, R. R. B. von Frese, and J. W Kim, Comparing Magsat, Ørsted and CHAMP crustal magnetic anomaly data over the Kursk Magnetic Anomaly, Russia, in First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, edited by C. Reigber, H. Lühr, and P. Schwintzer, Heidelberg: Springer-Verlag, pp. 302–308, 2003.

    Google Scholar 

  41. von Frese, R. R. B., CORRECTION to von Frese, R. R. B., W J. Hinze and L. W. Braile, Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion (Earth Planet. Sci. Lett., 53, 69-83, 1981), Earth Planet. Sci. Lett., 163, 409–411, 1998.

    Article  Google Scholar 

  42. von Frese, R. R. B., W J. Hinze, and L. W Braile, Spherical-Earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration, J. Geophys., 49, 234–242, 1981a.

    Google Scholar 

  43. von Frese, R. R. B., W J. Hinze, L. W Braile, and A. J. Luca, Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion, Earth Planet. Sci. Lett., 53, 69–83, 1981b.

    Article  Google Scholar 

  44. von Frese, R. R. B., W J. Hinze, J. L. Sexton, and L. Braile, Verification of crustal component in satellite magnetic data, Geophys. Res. Lett., 9, 293–295, 1982.

    Article  Google Scholar 

  45. von Frese, R. R. B., D. N. Ravat, W J. Hinze, and C. A. McGue, Improved inversion of geopotential field anomalies for lithospheric investigations, Geophysics, 53, 375–385, 1988.

    Article  Google Scholar 

  46. von Frese, R. R. B., H. R. Kim, L. Tan, J. W. Kim, P. T. Taylor, M. E. Purucker, D. E. Alsdorf, and A. J. Anderson, Satellite magnetic anomalies of the Antarctic crust, Annali di Geofisica, 42, 293–307, 1999a.

    Google Scholar 

  47. von Frese, R. R. B., L. Tan, J. W. Kim, and C. R. Bentley, Antarctic crustal modeling from the spectral correlation of free-air gravity anomalies with the terrain, J. Geophys. Res., 104, 25275–25297, 1999b.

    Article  Google Scholar 

  48. von Frese, R. R. B., H. R. Kim, J. W Kim, and P. T. Taylor, CHAMP, Ørsted and Magsat magnetic anomalies of the Antarctic lithosphere, in First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, edited by C. Reigber, H. Lühr, and P. Schwintzer, Heidelberg: Springer-Verlag, pp. 309–314, 2003.

    Google Scholar 

  49. von Frese, R. R. B., H. R. Kim, P. T. Taylor, and M. F. Asgharzadeh, Reliability of CHAMP anomaly continuation, in Earth Observation with CHAMP: Results from Three Years in Orbit, edited by C. Reigber, H. Lühr, P. Schwintzer and J. Wickert, Heidelberg: Springer-Verlag, pp. 287–292, 2004 (in press).

    Google Scholar 

  50. Whaler, K. A., Downward continuation of Magsat lithospheric anomalies to the Earth’s surface, Geophys. J. Int., 116, 267–278, 1994.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyung Rae Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H.R., von Frese, R.R.B., Golynsky, A.V. et al. Application of satellite magnetic observations for estimating near-surface magnetic anomalies. Earth Planet Sp 56, 955–966 (2004). https://doi.org/10.1186/BF03351793

Download citation

Key words

  • Crustal magnetic anomaly
  • satellite data
  • ADMAP
  • least squares inversion