Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Simulation of whistler mode propagation for low latitude stations

Abstract

Representing lightning discharge current source by a Dirac delta function, Maxwell’s equations are solved to derive the expression for wave-electric field as a function of frequency and distance including the effect of interparticle collisions. The exact time-dependence of the propagating non-monochromatic signal for the realistic magnetospheric model is computed for low latitude stations (in India). The computation is extended for the wave propagating through different regions of the magnetosphere and results are compared with the measured data. Points of agreements and differences are illuminated.

References

  1. Cho, M. and M. J. Rycroft, Non-uniform ionization of the upper atmosphere due to the electromagnetic pulse from a horizontal lightning discharge, J. Atmos. Terr. Phys., 63, 559–580, 2001.

  2. Eckersley, T. L., Musical atmospherics, Nature, 135, 104–105, 1935.

  3. Ferencz, Cs., Electromagnetic wave propagation in inhomogeneous media: Strong and weak inhomogeneities, Acta Techn. Ac. Sci. H., 85(3-4), 433, 1977.

  4. Ferencz, Cs., Electromagnetic wave propagation in inhomogeneous media: Method of inhomogeneous basic modes, Acta Techn. Ac. Sci. H., 86(1-2), 79, 1978.

  5. Ferencz, O., Whistler-mode propagation: Solution in homogeneous and weakly inhomogeneous lossy plasmas, Periodica Polytechnica Ser. El. Eng., 38, 267–285, 1994.

  6. Guthart, H., Nose whistler dispersion as a measure of Magnetosphere Electron Temperature, Radio Sci. J. of Res., NBS/USNC-URSI, 69D, 1417–1424, 1965.

  7. Hasegawa, M., M. Hayakawa, and J. Ohtsu, On the conditions of duct trapping of low latitude whistlers, Ann. Geophys., 34, 317, 1978.

  8. Hayakawa, M., Y. Tanaka, K. Ohta, and T. Okada. Absolute intensity of day time whistlers at low and middle latitudes and its latitudinal variation, J. Geophys. Res., 59, 67–72, 1986.

  9. Helliwell, R. A. Whistlers and Related Ionospheric Phenomena, Stanford University Press, Stanford, California, 1965.

  10. Inan, U. S., W. A. Sampson, and Y. N. Taranenko, Space-time structure of optical flashes and ionization changes produced by lightning-EMP, Geophys. Res. L., 23, 133–136, 1996.

  11. Itonaga, M., A. Yoshikawa, and K. Yumoto, One-dimensional transient response of the inner magnetosphere at the magnetic equator, 1. Transfer function and poles, J. Geomag. Geoelctr., 49, 21–48, 1997a.

  12. Itonaga, M., A. Yoshikawa, and K. Yumoto, One-dimensional transient response of the inner magnetosphere at the magnetic equator, 2. Analysis of waveforms, J. Geomag. Geoelctr., 49, 49–68, 1997b.

  13. Kamke, E., Differentialgleichungen, Lösungsmethoden and Lösungen I, (Akademische Verlagsgesellschaft, Geest and Porting K. G., Leipzig, (Punkt 23.5), 412–415, 1956.

  14. Kamke, E., Differentialgleichungen, Lösungsmethoden and Lösungen II, (Akademische Verlagsgesellschaft, Geest and Porting K. G., Leipzig, (Punkt 11.1.), 93–98, 1965.

  15. Liang, B. X., T. Bao, and J. S. Xu, Propagation characteristics of nighttime whistlers in the region of equatorial anomaly, J. Atmos. Terr. Phys., 47, 999, 1985.

  16. Nagano, I., S. Yagitani, K. Miyamura, and S. Makino, Full-wave analysis of elves created by lightning-generated electromagnetic pulses, J. Atmos. Terr. Phys., 65, 615–625, 2003.

  17. Ohta, K., T. Tomomatsu, O. Takahashi, and M. Hayakawa, Propagation characteristics of very low latitude whistlers by ray-tracing, IEICE Trans. Commun., J75-B-II, 309, 1992 (in Japanese).

  18. Ohta, K., Y Nishimura, and T. Kitagawa, Study of propagation characteristics of very low latitude whistlers by means of three-dimensional ray-tracing computations, J. Geophys. Res., 102, 7537–7546, 1997.

  19. Park, C. G., Methods of determining electron concentration in the magnetosphere from nose whistlers, Tech. Report no. 3454, Radioscience Lab., Stanford University, Stanford, California, 11–17, 1972.

  20. Rowland, H. L., R. F. Fernsler, J. D. Huba, and P. A. Bernhardt, Lightning driven EMP in the upper atmosphere, Geophys. Res. L., 22, 361–364, 1995.

  21. Sazhin, S. S., M. Hayakawa, and K. Bullough, Whistler diagnostics of magnetospheric parameter, A review, Ann. Geophys., 10, 293–308, 1992.

  22. Singh, B. and B. A. P. Tantry, On ducting of whistlers at low latitudes, Ann. Geophys., 29, 561–568, 1973.

  23. Singh, R. P., Whistler studies at low latitudes: A review, I. J. Rad. Phys., 22, 139–155, 1993.

  24. Singh, R. P., Lalmani, and U. P. Singh, Electron density distribution derived from low latitude whistler studies, Ann. Geophys., 11, 1011–1017, 1993.

  25. Singh, R. P., A. K. Singh, and D. K. Singh, Plasmaspheric parameters as determined from whistler spectrograms, A review, J. Atmos. Solar Terr. Phys., 60, 495–508, 1998.

  26. Somayajulu, V. V., M. Rao, and B. A. P. Tantry, Whistlers at low latitude, Ind. J. Rad. Space Phys., 1, 102–118, 1972.

  27. Thomson, N. R., Raytracing the paths of very low latitude man-made whistler-mode signals, J. Atmos. Terr. Phys., 49, 321, 1987.

  28. Veronis, G., V. P. Pasko, and U. S. Inan, Characteristics pf mesospheric optical emissions produced by lightning discharges, J. Geophys. Res., 104, 12645–12656, 1999.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kalpana Singh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Singh, R.P. & Ferencz, O.E. Simulation of whistler mode propagation for low latitude stations. Earth Planet Sp 56, 979–987 (2004). https://doi.org/10.1186/BF03351795

Download citation

Key words

  • Simulation
  • magnetoplasma
  • whistler
  • dynamic spectra