Skip to main content

Advertisement

Detailed structure of the upper mantle discontinuities around the Japan subduction zone imaged by receiver function analyses

Article metrics

  • 346 Accesses

  • 22 Citations

Abstract

High-resolution receiver function (RF) images of the upper mantle structure beneath the Japan Islands are obtained by RF analysis of the P-wave coda portions of 389 teleseismic events observed at 138 high-density broadband stations. We construct RFs through frequency-domain division using a water level of 0.01 and Gaussian low-pass filters of 1.0, 0.5, 0.3, and 0.1 Hz, and produce depth-migrated RFs using the one-dimensional IASP91 velocity model. The RF images clearly resolve the subducting Pacific Plate to a depth of 200 km, and reveal a local 30 km elevation of the 410 km discontinuity within the subducting plate. The 660 km discontinuity is also found to exhibit a broad 50 km depression under the influence of the stagnating slab. From analysis of the frequency dependence of the RFs, the thickness of the 410 km discontinuity is inferred to vary on a relatively local scale, whereas the 660 km transition is sharp throughout the Japan Islands.

References

  1. Bercovici, D. and S. Karato, Whole mantle convection and the transitionzone water filter, Nature, 39–44, 2003.

  2. Bina, C. R. and G. R. Helffrich, Phase transition Clapeyron slopes and transition zone seismic discontinuity topography, J. Geophys. Res., 99, 15853–15860, 1994.

  3. Castle, J. C. and K. C. Creager, Seismic evidence against a mantle chemical discontinuity near 660 km depth beneath Izu-Bonin, Geophys. Res. Lett., 24, 241–244, 1997.

  4. Chevrot, S. and N. Girardin, On the detection and identification of converted and reflected phases from receiver functions, Geophys. J. Int., 141, 801–808, 2000.

  5. Collier, J. D. and G. R. Helffrich, Topography of the “410” and “660” km seismic discontinuities in the Izu-Bonin subduction zone, Geophys. Res. Lett., 24, 1535–1538, 1997.

  6. Flanagan, M. P. and P. M. Shearer, Global mapping of topography on transition zone discontinuities by stacking SS precursors, J. Geophys. Res., 103, 2673–2692, 1998.

  7. Fukao, Y., S. Widiyantoro, and M. Obayashi, Stagnant slabs in the upper and lower transition region, Rev. Geophys., 39, 291–323, 2001.

  8. Gu, Y. and A. M. Dziewonski, Global de-correlation of the topography of transition zone discontinuities, Earth Planet. Sci. Lett., 157, 57–67, 1998.

  9. Gu, Y., A. M. Dziewonski, and G. Ekstrom, Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities, Geophys. J. Int., 154, 559–583, 2003.

  10. Helffrich, G. R. and B. J. Wood, 410 km discontinuity sharpness and the form of the olivine α-β phase diagram: Resolution of apparent seismic contradictions, Geophys. J. Int., 126, F7–F12, 1996.

  11. Iidaka, T. and D. Suetsugu, Seismological evidence for metastable olivine inside a subducting slab, Nature, 356, 593–595, 1992.

  12. Ito, E. and E. Takahashi, Post spinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications, J. Geophys. Res., 94, 10637–10646, 1989.

  13. Katsura, T. and E. Ito, The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Pricise determination of stabilities of olivine, modified spinel and spinel, J. Geophys. Res., 94, 15663–15670, 1989.

  14. Kennett, B. L. N. and E. R. Engdahl., Travel times for global earthquake location and phase identification, Geophys. J. Int., 105, 429–465, 1991.

  15. Koper, K. D., D. A. Wiens, L. M. Dorman, J. A. Hildebrand, and S. C. Webb, Modeling the Tonga slab: Can travel time data resolve a metastable olivine wedge?, J. Geophys. Res., 103, 30079–30100, 1998.

  16. Langston, C. A., The effect of planar dipping structure on source and receiver responses for constant ray parameter, Bull. Seismol. Soc. Am., 67, 1029–1050, 1977.

  17. Langston, C. A., Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res., 84, 4749–4762, 1979.

  18. Li, X., S. V. Sobolev, R. Kind, X. Yuan, and Ch. Estabrook, A detailed receiver function image of the upper mantle discontinuities in the Japan subduction zone, Earth Planet. Sci. Lett., 183, 527–541, 2000.

  19. Nakamura, M., Y. Yoshida, H. Kuroki, K. Yoshizawa, D. Zhao, H. Takayama, T. Yamazaki, K. Fujiwara, N. Hamada, J. Kasahara, T. Kanazawa, S. Kodaira, T. Sato, H. Shiniobara, and R. Hino, Threedimensional P and S wave velocity structure beneath Japan, Programme Abstaracts, Seis. Soc. Japan, 2000 Fall meeting, P050, 2000 (in Japanese).

  20. Revenaugh, J. and T. H. Jordan, A study of mantle layering beneath the western Pacific, J. Geophys. Res., 94, 5787–5813, 1989.

  21. Revenaugh, J. and T. H. Jordan, Mantle layering from ScS Reverberations 2. The transition zone, J. Geophys. Res., 96, 19763–19780, 1991.

  22. Ringwood, A. E., Phase transformations and their bearing on the constitution and dynamics of the mantle, Geochim. Cosmochim. Acta, 55, 2083–2110, 1991.

  23. Shearer, P. M., Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases, J. Geophys. Res., 96, 18,147–18,182, 1991.

  24. Shearer, P. M., Upper mantle seismic discontinuities, in Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, edited by S. Kararo, A. M. Forte, R. C. Liebermann, G. Masters, and L. Stixrude, pp. 115–131, AGU, 2000.

  25. Shearer, P. M. and T. G. Masters, Global mapping of topography on the 660 km discontinuity, Nature, 355, 791–796, 1992.

  26. Smyth, J. R. and D. J. Frost, The effect of water on the 410-km discontinuity: An experimental study, Geophys. Res. Let., 29, 10.1029/2001GL014418, 2002.

  27. Sung, C. M. and R. G. Burns, Kinetics of high-pressure phase transformations: Implications to the evolution of the olivine-spinel transition in the downgoing lithosphere and its consequences on the dynamics of the mantle, Tectnophysics., 31, 1–32, 1976.

  28. Vidale, J. E. and H. M. Benz, Upper-mantle seismic discontinuities and the thermal structure of subduction zones, Nature, 356, 678–682, 1992.

  29. Vidale, J. E., X. Y. Ding, and S. P. Grand, The 410-km depth discontinuity: A sharpness estimate from near critical reflection, Geophys. Res. Lett., 22, 2557–2560, 1995.

  30. Wessel, P. and W. H. F. Smith, New, improved version of Generic Mapping Tools released, EOS Trans. Amer. Geophys. U., 79(47), pp. 579, 1998.

  31. Yamauchi, M., K. Hirahara, and T. Shibutani, High-resolution receiver function imaging of the seismic velocity discontinuities in the crust and the uppermost mantle beneath southwest Japan, Earth Planets Space, 55, 59–64, 2003.

  32. Yamazaki, A. and K. Hirahara, The thickness of upper mantle discontinuities, as inferred from short period J-Array data, Geophys. Res. Lett., 21, 1811–1814, 1994.

  33. Yoshioka, S. and H. Sanshadokoro, Numerical simulations of deformation and dynamics of horizontally lying slab, Geophys. J. Int., 151, 69–82, 2002.

  34. Zhao, D., A. Hasegawa, and H. Kanamori, Deep structure of Japan subduction zone as derived from local, regional and teleseismic events, J. Geophys. Res., 99, 22313–22329, 1994.

Download references

Author information

Correspondence to Takashi Tonegawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tonegawa, T., Hirahara, K. & Shibutani, T. Detailed structure of the upper mantle discontinuities around the Japan subduction zone imaged by receiver function analyses. Earth Planet Sp 57, 5–14 (2005) doi:10.1186/BF03351801

Download citation

Key words

  • Receiver function
  • upper mantle discontinuity
  • Japan subduction zone