Skip to main content

Advertisement

Influence of lattice thermal conductivity on thermal convection with strongly temperature-dependent viscosity

Article metrics

  • 238 Accesses

  • 17 Citations

Abstract

To examine the effects of temperature-dependent lattice thermal conductivity (lattice-k) on the thermal convection with a temperature-dependent viscous fluid, particularly on the upper thermal boundary layer, we have studied numerically 2-D thermal convective flows with both constant thermal conductivity (constant-k) and lattice-k models. Numerical experiments with large viscosity contrasts, greater than a million, produce a cooler and thinner upper thermal boundary layer for the lattice-k compared with those for the constant-k, implying that thermal convection with lattice-k produces a much sharper boundary between the lithosphere and asthenosphere. The differences between the constant-k and lattice-k can be reasonably explained by the following two causes: (i) the decreasing lattice-k with depth increases an effective Rayleigh number around the bottom of the thermal boundary layer, and (ii) the distribution of lattice-k and uniform vertical heat flux within the thermal boundary layer determine the temperature distribution. The predicted sharper boundary, i.e. sharper vertical viscosity gradient near the bottom of the lithosphere, may play an important role on controlling the amount of lithospheric deformation associated with the downwelling.

References

  1. Arakawa, A., Computational design for long-term numerical integrations of the equations of atmospheric motion, Comput. Phys., 1, 119–143, 1966.

  2. Christensen, U. R., Heat transport by variable viscosity convection and implications for the Earth’s thermal evolution, Phys. Earth Planet. Int., 35, 264–282, 1984.

  3. Clark, S. P., Radiative transfer in the Earth’s mantle, Trans. AGU, 38, 931–938, 1957.

  4. Deschamps, F. and C. Sotin, Thermal convection in the outer shell of large icy satellites, J. Geophys. Res., 106, 5107–5121, 2001.

  5. Dubuffet, F. and D. A. Yuen, A thick pipe-like heat-transfer mechanism in the mantle: nonlinear coupling between 3-D convection and variable thermal conductivity, Geophys. Res. Lett., 27, 17–20, 2000a.

  6. Dubuffet, F., D. A. Yuen, and M. Rabinowicz, Effects of a realistic mantle thermal conductivity on the patterns of 3D convection, Earth Planet. Sci. Lett., 171, 401–409, 1999.

  7. Dubuffet, F., D. A. Yuen, and T. K. B. Yanagawa, Feedback effects of variable thermal conductivity on the cold downwellings in high Rayleigh number convection, Geophys. Res. Lett., 27, 2981–2984, 2000b.

  8. Dubuffet, F., D. A. Yuen, and E. S. G. Rainey, Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity, Nonlinear Process. Geophys., 129, 359–375, 2002.

  9. Echelmeyer, K. and B. Kamb, Rheology of ice II and ice III from highpressure extrusion, Geophys. Res. Lett., 13, 693–696, 1986.

  10. Frank-Kamenetskii, D. A., Diffusion and Heat Transfer in Chemical Kinetics, Plenum, New York, 1969.

  11. Fujisawa, H., N. Fujii, H. Mizutani, H. Kanamori, and S. Akimoto, Thermal diffusivity of Mg2SiO4, Fe2SiO4 and NaCl at high pressures and temperature, J. Geophys. Res., 73, 4727–4733, 1968.

  12. Hansen, V. L., J. J. Willis, and W. B. Banerdt, Tectonic overview and synthesis, in Venus II, The University of Arizona Press, Arizona, 1997.

  13. Hobbs, P.V., Ice Physics, Clarendon Press, Oxford, England, 1974.

  14. Hofmeister, A., Mantle values of thermal conductivity and the geotherm from phonon lifetimes, Science, 283, 1699–1706, 1999.

  15. Hofmeister, A., Thermal conductivity of spinels and olivines from vibrational spectroscopy: Ambient conditions, American Mineralogist, 86, 1188–1208, 2001.

  16. Hooke, R. Leb., Principles of Glacier Mechanics, Prentice Hall, 1998.

  17. Kameyama, M. and M. Ogawa, Transitions in thermal convection with strongly temperature-dependent viscosity in a wide box, Earth Planet. Sci. Lett., 180, 355–367, 2000.

  18. Kanamori, H., N. Fujii, and H. Mizutani, Thermal diffusivity measurement of rock-forming minerals from 300 to 1100 K, J. Geophys. Res., 73, 595–605, 1968.

  19. Kaula, W. M., Mantle convection and crustal evolution on Venus, Geophys. Res. Lett., 17, 1401–1403, 1990.

  20. Kidder, J. G. and R. J. Phillips, Convection-driven subsolidus crustal thickening on Venus, J. Geophys. Res., 101, 23181–23194, 1996.

  21. McKinnon, W. B., Sighting the seas of Europa, Nature, 386, 765–767, 1997.

  22. McKinnon, W. B., Convective instability in Europa’s floating ice shell, Geophys. Res. Lett., 26, 951–954, 1999.

  23. Moresi, L. N. and V. S. Solomatov, Numerical investigation of 2D convection with extremely large viscosity variations, Phys. Fluid., 7, 2154–2162, 1995.

  24. Ratcliff, J. T., P. J. Tackley, G. Schubert, and A. Zebib, Transitions in thermal convection with strongly variable viscosity, Phys. Earth Planet. Int., 102, 201–212, 1997.

  25. Regenauer-Lieb, K. and D. A. Yuen, Rapid convection of elastic energy into plastic shear heating during incipient necking of the lithosphere, Geophys. Res. Lett., 25, 2737–2740, 1998.

  26. Schatz, J. F. and G. Simmons, Thermal conductivity of Earth materials at high temperatures, J. Geophys. Res., 77, 6966–6983, 1972.

  27. Schenk, P. M., W. B. McKinnon, D. Gwynn, and J. M. Moore, Flooding of Ganymede’s bright terrains by low-viscosity water-ice lavas, Nature, 410, 57–60, 2001.

  28. Schubert, G., D. L. Turcotte, and P. Olson, Mantle Convection in the Earth and Planets, Cambridge University Press, Cambridge, 2001.

  29. Solomatov, V. S., Scaling of temperature- and stress-dependent viscosity convection, Phys. Fluids., 7, 266–274, 1995.

  30. Solomatov, V. S. and L. N. Moresi, Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets, Geophys. Res. Lett., 24, 1907–1910, 1997.

  31. Tackley, P. J., Effects of strongly temperature-dependent viscosity on timedependent, 3-dimensional models of mantle convection, Geophys. Res. Lett., 20, 2187–2190, 1993.

  32. Tatebe, O., The Multigrid Preconditioned Conjugate Gradient Method, Proceedings of Sixth Copper Mountain Conference on Multigrid Methods, NASA Conference Publication, 3224, 621–634, 1993.

  33. van den Berg, A. P., D. A. Yuen, and V. Steinbach, The effects of variable thermal conductivity on mantle heat transfer, Geophys. Res. Lett., 28, 575–578, 2001.

  34. van den Berg, A. P., D. A. Yuen, and J. R. Allwardt, Nonlinear effects from variable thermal conductivity and mantle internal heating: Implications for massive melting and secular cooling of mantle, Phys. Earth Planet. Inter., 129, 359–375, 2002a.

  35. van den Berg, A. P. and D. A. Yuen, Delayed cooling of the Earth’s mantle due to variable thermal conductivity and the formation of a low conductivity zone, Earth Planet. Sci. Lett., 199, 403–413, 2002b.

  36. Weinstein, S. A. and U. Christensen, Convection planforms in a fluid with a temperature-dependent viscosity beneath a stress-free upper boundary, Geophys. Res. Lett., 18, 2035–2038, 1991.

  37. Weinstein, S. A., P. L. Olson, and D. A. Yuen, Time-dependent large aspect-ratio thermal convection in the Earth’s mantle, Geophys. Astrophys. Fluid Dyn., 47, 157–197, 1989.

  38. Yanagawa, T. K. B., M. Nakada, and D. A. Yuen, A simplified mantle convection model for thermal conductivity stratification, Phys. Earth Planet. Int., 146, 163–177, 2004.

  39. Zuber, M. T., The crust and mantle of Mars, Nature, 412, 220–227, 2001.

Download references

Author information

Correspondence to Tomohiko K. B. Yanagawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yanagawa, T.K.B., Nakada, M. & Yuen, D.A. Influence of lattice thermal conductivity on thermal convection with strongly temperature-dependent viscosity. Earth Planet Sp 57, 15–28 (2005) doi:10.1186/BF03351802

Download citation

Key words

  • Mantle convection
  • lattice thermal conductivity
  • variable viscosity