Skip to main content

Seasonal behavior of meteor radar winds over Wuhan

Abstract

A newly installed meteor radar has been installed to measure winds in the mesosphere and lower thermosphere (MLT) over Wuhan (114.4°E, 30.6°N). In the present study, a database of the first 25 months (February 2002–February 2004) of observations has been analyzed to investigate the climatology of mean winds and tides. The daily average zonal wind is charactered by a strong shear in solstices and an intense eastward flow in summer. The daily average meridional wind is northward in winter and southward in other seasons. There are some discrepancies between the radar mean winds and the HWM93 model winds. The summer zonal winds and meridional winds from the model are obviously weaker than our observations. The analysis on tides indicates that the diurnal tide is dominant at Wuhan. The seasonal variability is observed in both the diurnal and semidiurnal tidal amplitudes with the maximum values occurring usually near the equinoxes. Compared with the Global Scale Wave Model (GSWM00), the observed results generally show a smaller diurnal tidal amplitude and a larger semidiurnal tidal amplitude.

References

  • Burrage, M. D., M. E. Hagan, W. R. Skinner, D. L. Wu, and P. B. Hays, Long-term variability in the solar diurnal tide observed by HRDI and simulated by the GSWM, Geophys. Res. Lett., 22, 2641–2644, 1995.

    Article  Google Scholar 

  • Dunkerton, T. J., Theory of the mesopause oscillation, J. Atmos. Sci., 39, 2681–2690, 1982.

    Article  Google Scholar 

  • Forbes, J. M., Atmospheric tides 2. The solar and lunar semidiurnal components, J. Geophys. Res., 87, 5241–5252, 1982.

    Article  Google Scholar 

  • Hagan, M. E., D. M. Burrage, J. M. Forbes, J. Hackney, W. J. Randel, and X. Zhang, GSWM-98: Results for migrating solar tides, J. Geophys. Res., 104, 6813–6828, 1999.

    Article  Google Scholar 

  • Hedin, A. E., E. L. Fleming, A. H. Manson, F. J. Schmidlin, S. K. Avery, R. R. Clark, S. J. Franke, G. J. Fraser, T. Tsuda, F. Vial, and R. A. Vincent, Empirical wind models for the upper, middle and lower atmosphere, J. Atmos. Terr. Phys., 58, 1421–1447, 1996.

    Article  Google Scholar 

  • Hocke, K. and K. Igarashi, Mean winds in the mesopause region observed by MF radars at 31° and 45°N, J. Atmos. Solar-Terr. Phys., 60, 1081–1087, 1998.

    Article  Google Scholar 

  • Hocke, K. and K. Igarashi, Diurnal and semidiurnal tide in the upper middle atmosphere during the first year of simultaneous MF radar observation in northern and southern Japan (45°N and 31°N), Ann. Geophysicae, 17, 405–414, 1999.

    Article  Google Scholar 

  • Hocking, W. K., Recent advances in radar instrumentation and techniques for studies of the mesosphere, stratosphere, and troposphere, Radio Sci., 32, 2241–2270, 1997.

    Article  Google Scholar 

  • Hocking, W. K. and A. Hocking, Temperature tides determined with meteor radar, Ann. Geophysicae, 20, 1447–1467, 2002.

    Article  Google Scholar 

  • Hocking, W. K., B. Fuller, and B. Vandepeer, Real-time determination of meteor related parameters utilizing modern digital technology, J. Atmos. Solar-Terr. Phys., 63, 155–169, 2001.

    Article  Google Scholar 

  • Holdsworth, D. A., I. M. Reid, and M. A. Cervera, Buckland Park all-sky interferometric meteor radar, Radio Sci., 39, RS5009, doi:10.1029/2003RS003014, 2004.

    Google Scholar 

  • Holton, J. R., The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere, J. Atmos. Sci., 39, 791–799, 1982.

    Article  Google Scholar 

  • Igarashi, K., S. P. Namboothiri, and P. Kishore, Tidal structure and variability in the mesosphere and lower thermosphere over Yamagawa and Wakkanai, J. Atmos. Solar-Terr. Phys., 64, 1037–1053, 2002.

    Article  Google Scholar 

  • Kato, S., Dynamics of the Upper Atmosphere, D. Reidel, Hingham, Mass., 1980.

    Google Scholar 

  • Lindzen, R. S., Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.

    Article  Google Scholar 

  • Manson, A. H., C. E. Meek, M. Hagan, C. Hall, W. Hocking, J. Mac-Dougall, S. Franke, D. Riggin, D. Fritts, R. Vincent, and M. Burrage, Seasonal variations of the semi-diurnal and diurnal tides in the MLT: Multi-year MF radar observations from 2 to 70°N, and the GSWM tidal model, J. Atmos. Solar-Terr. Phys., 61, 809–828, 1999.

    Article  Google Scholar 

  • Mayr, H. G., J. G. Mengel, K. L. Chan, and H. S. Porter, Seasonal variations of the diurnal tide induced by gravity wave filtering, Geophys. Res. Lett., 25, 943–946, 1998.

    Article  Google Scholar 

  • Mclandress, C., G. G. Shepherd, and B. H. Solheim, Satellite observations of thermospheric tides: Results from the Wind Imaging Interferometer on UARS, J. Geophys. Res., 101, 4093, 1996.

    Article  Google Scholar 

  • Nakamura, T., T. Tsuda, and S. Fukao, Mean winds at 60-90 km observed with the MU radar (35°N), J. Atmos. Terr. Phys., 58, 655–660, 1996.

    Article  Google Scholar 

  • Namboothiri, S. P., T. Tsuda, and T. Nakamura, Interannual variability of mesospheric mean winds observed with the MU radar, J. Atmos. Solar-Terr. Phys., 61, 1111–1122, 1999.

    Article  Google Scholar 

  • Namboothiri, S. P., P. Kishore, K. Igarashi, T. Nakamura, and T. Tsuda, MF radar observations of mean winds over Yamagawa (31.2°N, 130.6°E) andWakkanai (45.4°N, 141.7°E), J. Atmos. Solar-Terr. Phys., 62, 1177–1187, 2000.

    Article  Google Scholar 

  • Reddi, R. C., K. Rajeev, and G. Ramkumar, Tidal winds in the meteor region over Trivandrum, J. Atmos. Terr. Phys., 55, 1219–1231, 1993.

    Article  Google Scholar 

  • Roper, R. G., The measurement of meteor winds over Atlanta (34N, 84W), Radio Sci., 10, 363–369, 1975.

    Article  Google Scholar 

  • Tsuda, T. and S. Kato, Characteristics of semidiurnal tides observed by the Kyoto meteor radar and Saskatoon Medium-Frequency radar, J. Geophys. Res., 93, 7027–7036, 1988.

    Article  Google Scholar 

  • Tsuda, T., T. Nakamura, and S. Kato, Mean winds observed by the Kyoto meteor radar in 1983–1985, J. Atmos. Terr. Phys., 49, 461–466, 1987.

    Article  Google Scholar 

  • Vincent, R. A., T. Tsuda, and S. Kato, A comparative study of mesospheric solar tides observed at Adelaide and Kyoto, J. Geophys. Res., 93, 699–708, 1988.

    Article  Google Scholar 

  • Vincent, R. A., S. Kovalam, D. C. Fritts, and J. R. Isler, Long-term MF radar observations of solar tides in the low-latitude mesosphere: Interannual variability and comparisons with the GSWM, J. Geophys. Res., 103, 8667–8683, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxin Zhao.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Liu, L., Wan, W. et al. Seasonal behavior of meteor radar winds over Wuhan. Earth Planet Sp 57, 61–70 (2005). https://doi.org/10.1186/BF03351806

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351806

Key words

  • Meteor radar
  • mean winds
  • tides
  • MLT dynamics