Skip to main content

Curie Point Depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey

Abstract

We examined the thermal structure of the crust across complex deformation zones in SW Turkey using the Curie Point Depth (CPD) estimates and made comparisons of the thermal state of the crust with the seismic activity to provide insights for spatial limits of brittle failure in this region. The CPD estimates of SW Turkey from 80 overlapping blocks vary from 9 to 20 km. SW Turkey has two regions of shallow CPD. The shallow CPD region in the Uşak-Afyon zone in western part of the study area is caused by upper crustal thinning and shallowing of high conductivity lower crust. The other shallow CPD region is in the Central Anatolian Volcanic Province in the eastern part of the study area and is thought to be related to the presence of silicate melts in the shallow-level crust. A NNW-SSE trending belt of deep CPD region separates these two zones and is located along the boundary of high (west) and low (east) seismic activities. It is interpreted that the regional thermal structure in SW Turkey is mainly controlled by the processes associated with the African-Eurasian plate convergence zone. The N-S lithospheric extension above the subducting slab created a thermal dome in Western Anatolia in response to upwelling of asthenosphere. Post-collisional magmatism of Neogene-Quaternary age generated another thermal dome in the eastern area. Comparison of the CPD variations with the seismic activity has shown that large earthquakes occur near the margins of the inferred regional thermal domes. Low seismic activity within the regionally active seismic areas seems to be associated with shallow CPD and high heat flow.

References

  1. Ambraseys, N. N., Engineering seismology, Earthquake Eng. Struct. Dyn., 17, 1–105, 1988.

    Article  Google Scholar 

  2. Anastasakis, G. and G. Kelling, Tectonic connection of the Hellenic and Cyprus arcs and related geotectonic elements, Mar. Geol., 97, 261–277, 1991.

    Article  Google Scholar 

  3. Andrew, T. and A. H. F. Robertson, The Beyşehir-Hoyran-Hadim nappes: genesis and emplacement of Mesozoic marginal and oceanic units of the northern Neotethys in southern Turkey, Journal of the Geological Society, 159, 529–543, 2002.

    Article  Google Scholar 

  4. Ates, A., P. Kearey, and S. Tufan, New gravity and magnetic maps of Turkey (Research Note), Geophys. J. Int., 136, 499–502, 1999.

    Article  Google Scholar 

  5. Aydar, E. and A. Gourgaud, The geology of Mount Hasan stratovolcano, central Anatolia, Turkey, J. Volcan. Geoth. Res., 85, 129–152, 1998.

    Article  Google Scholar 

  6. Aydar, E. and A. Gourgaud, Garnet-bearing basalts: an example from Mt. Hasan, Central Anatolia, Turkey, Mineralogy and Petrology, 75, 185–201, 2002.

    Article  Google Scholar 

  7. Aydın, İ. and H. İ. Karat, Türkiye aeromagnetik haritalarına genel bir bakış, Jeofizik, 9, 41–44, 1995 (in Turkish with English abstract).

    Google Scholar 

  8. Badalyan, M., Geothermal features of Armenia: a country update, Proceedings World Geothermal Congress 2000, pp. 71–76, Kyushu-Tohoku, Japan, 2000.

    Google Scholar 

  9. Banerjee, B., P. B. V. Subba Rao, Gautam Gupta, E. J. Joseph, and B. P. Singh, Results from a magnetic survey and geomagnetic depth sounding in the post-eruption phase of the Barren Island volcano, Earth Planets Space, 50, 327–338, 1998.

    Article  Google Scholar 

  10. Barka, A. A., The North Anatolian Fault Zone, Annales Tectonicae, 6, 164–195, 1992.

    Google Scholar 

  11. Bhattacharyya, B. K. and L. K. Leu, Spectral analysis of gravity and magnetic anomalies due to two dimensional structures, Geophysics, 40, 993–1013, 1975.

    Article  Google Scholar 

  12. Blakely, R. J., Curie Temperature Isotherm Analysis and Tectonic Implications of Aeromagnetic Data from Nevada, J. Geophys. Res., 93, 11817–11832, 1988.

    Article  Google Scholar 

  13. Blakely, R. J. and S. Hassanzadeh, Estimation of depth to magnetic source using maximum entropy power spectra, with application to the Peru-Chile Trench, in Nazca Plate: Crustal Formation and Andean Convergence, Geolog. Soc. America Memoir, 154, 667–682, 1981.

    Article  Google Scholar 

  14. Bozkurt, E., Neotectonics of Turkey—a synthesis, Geodinamica Acta, 14, 3–30, 2001.

    Article  Google Scholar 

  15. Bullard, E. C., Heat flow in South Africa, Proc. R. Soc. London. Ser. A., 173, 474–502, 1939.

    Article  Google Scholar 

  16. Byerly, P. E. and R. H. Stolt, An attempt to define the curie point isotherm in northern and central Arizona, Geophysics, 42, 1394–1400, 1977.

    Article  Google Scholar 

  17. Canitez, N. and B. Üçer, Computer determinations for the fault-plane solutions in and near Anatolia, Tectonophysics, 4, 235–244, 1967.

    Article  Google Scholar 

  18. Connard, G., R. Couch, and M. Gemperle, Analysis of aeromagnetic measurements from the cascade range in central Oregon, Geophysics, 48, 376–390, 1983.

    Article  Google Scholar 

  19. Çemen İ., M. C. Göncüoğlu, and K. Dirik, Structural Evolution of the Tuzgölü Basin in Central Anatolia, Turkey, The Journal of Geology, 107, 693–706, 1999.

    Article  Google Scholar 

  20. Dewey, J. F., M. R. Hempton, W. S. F. Kidd, F. Şaroglu, and A. M. C. Şengör, Shortening of continental lithosphere: the neotectonics of eastern Anatolia—a young collision zone, Collisional Tectonics, edited by M. O. Coward and A. C. Ries, Geol. Soc., London, Spec. Pub., 19, 3–36, 1986.

    Article  Google Scholar 

  21. Dolmaz, M. N., Determination of Curie Point Depths of Southern Part of Western Anatolia and Their Correlation With Geodynamic Events, Ph.D. Thesis, Istanbul University, Turkey (unpubl.), 2004 (in Turkish with English abstract).

    Google Scholar 

  22. Dolmaz, M. N., Z. M. Hisarli, T. Ustaömer, and N. Orbay, Curie point depths based on spectrum analysis of the aeromagnetic data, West Anatolian Extensional Province, Turkey, Pure and Appl. Geop., 162, 571–590, 2005.

    Article  Google Scholar 

  23. Doser, D. I. and H. Kanamori, Depth of seismicity in the Imperial Valley region (1977–1983) and its relationship to heat flow, crustal structure and the October 15, 1979 earthquake, J. Geophys. Res., 91, 675–688, 1986.

    Article  Google Scholar 

  24. Eyidoğan, H., Rates of crustal deformation in western Turkey as deduced from major earthquakes, Tectonophysics, 148, 83–92, 1988.

    Article  Google Scholar 

  25. Eyidoğan, H. and A. Barka, The 1 October 1995 Dinar earthquake, SW Turkey, Terra Nova, 8, 479–485, 1996.

    Article  Google Scholar 

  26. Eyidoğan, H. and J. Jackson, A seismological study of normal faulting in the Demirci, Alasehir and Gediz earthquakes of 1969–1970 in western Turkey: implications for the nature and geometry of deformation in the continental crust, Geophys. J. R. Astr. Soc., 81, 569–607, 1985.

    Article  Google Scholar 

  27. Fowler, C. M. R., The Solid Earth: An Introduction to Global Geophysics, 472 pp., Cambridge, U.K., 1990.

    Google Scholar 

  28. Gök, R., N. Türkelli, E. Sandvol, D. Seber, and M. Barazangi, Regional wave propagation in Turkey and surrounding regions, Geophys. Res. Lett., 27, 429–432, 2000.

    Article  Google Scholar 

  29. Görür, N., F. Y. Oktay, İ. Seymen, and A. M. C. Şengör, Paleotectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of a Neo-Tethyan closure, in The Geological Evolution of the Eastern Mediterranean, edited by J. E. Dixon and A. H. F. Robertson, Geol. Soc., London, Spec. Pub., 17, 467–482, 1984.

    Google Scholar 

  30. Gürbüz, C. and J. R. Evans, A seismic refraction study of the western Tuz Gölü basin, central Turkey, Geophys. J. Int., 106, 239–251, 1991.

    Article  Google Scholar 

  31. Gürer, A., O. F. Gürer, A. Pince, and O. M. İlkışık, Conductivity structure along the Gediz graben, West Anatolia, Turkey: Tectonic implications, Int. Geol. Rev., 43, 1129–1144, 2001.

    Article  Google Scholar 

  32. Gürer, A., M. Bayrak, O. F. Gürer, and O. M. İlkışık, The deep resistivity structure of southwestern Turkey: Tectonic implications, Int. Geol. Rev., 46, 655–670, 2004.

    Article  Google Scholar 

  33. Gürsoy, H., J. D. A. Piper, and O. Tatar, Neotectonic deformation in the western sector of tectonic escape in Anatolia: paleomagnetic study of the Afyon region, central Turkey, Tectonophysics, 374, 57–79, 2003.

    Article  Google Scholar 

  34. Hildenbrand, T. G., FFTFIL: A Filtering Program Based on Twodimensional Fourier Analysis, U.S.G.S. Open File Report, 83–237, 1983.

    Google Scholar 

  35. Hisarli, Z. M., Determination of Curie Point Depths in Western Anatolia and Related with the Geothermal Areas, Ph.D. Thesis, Istanbul University, Turkey (unpubl.), 1996 (in Turkish with English abstract).

    Google Scholar 

  36. Hyndman, R. D. and P. M. Shearer, Water in the lower continental crust: modeling magnetotelluric and seismic reflection results, Geophys. J., 98, 343–365, 1989.

    Article  Google Scholar 

  37. Hyndman, R. D. and K. Wang, Thermal constraints on the zone of possible major thrust earthquake failure on the Cascadia subduction zone, J. Geophys. Res., 98, 2039–2060, 1993.

    Article  Google Scholar 

  38. Isacks, B. L. and M. Barazangi, Geometry of Benioff zones: Lateral segmentation and downwards bending of the subducted lithosphere, Island arcs, deep-sea trenches and back-arc basins, edited by M. Talwani and W. C. Pitman III, Am. Geophys. Un. Maurice Ewing Series, 1, 99–114, 1977.

    Article  Google Scholar 

  39. Ito, K., Regional variations of the cutoff depth of seismicity in the crust and their relation to heat flow and large inland earthquakes, J. Phys. Earth, 38, 223–250, 1990.

    Article  Google Scholar 

  40. Ito, K., Seismogenic layer, reflective lower crust, surface heat flow and large inland earthquakes, Tectonophysics, 306, 423–433, 1999.

    Article  Google Scholar 

  41. İlkışık, O. M., Regional Heat Flow in Western Anatolia Using Silica Temperature Estimates from Thermal Springs, Tectonophysics, 244, 175–184, 1995.

    Article  Google Scholar 

  42. İlkışık, O. M., A. Gürer, T. Tokgöz, and C. Kaya, Geoelectromagnetic and geothermic investigations in the Ihlara Valley geothermal field, J. Volcan. Geoth. Res., 78, 297–308, 1997.

    Article  Google Scholar 

  43. Keller, J., D. Jung, K. Burgath, and F. Wolf, Geologie und petrologie des Neogenen kalkalkali-vulkanismus von Konya (Erenler Dag-Alaca Dag- Massiv Zentral-Anatolian), Geo. Jb., B 25, 37–117, 1977.

    Google Scholar 

  44. Kobayashi, Y., A relationship between the distribution of focal depth of micro-earthquakes and surface heat flow in the southwestern Japan and central Japan, Proc. Symp. Earthquake Prediction Research, 184–193, Natl. Comm. Geophys. Seismol. Soc., Jpn., 1976 (in Japanese with English abstract).

    Google Scholar 

  45. Le Pennec, J. L., J. L. Bourdier, J. L. Froger, A. Temel, G. Camus, and A. Gourgaud, Neogene ignimbrites of the Nevsehir plateau (Central Turkey): stratigraphy, distribution and source constraints, J. Volcan. Geoth. Res., 63, 59–87, 1994.

    Article  Google Scholar 

  46. Malin, S. R. C. and D. R. Barraclough, An algorithm for synthesizing the geomagnetic field, Computer & Geoscience, 7, 401–405, 1981.

    Article  Google Scholar 

  47. Maus, S., D. Gordon, and D. Fairhead, Curie temperature depth estimation using a self-similar magnetization model, Geophys. J. Int., 129, 163–168, 1997.

    Article  Google Scholar 

  48. McClusky, S., S. Balassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev, O. Gurkan, M. Hamburger, K. Hurst, H. Kahle, K. Kastens, G. Kekelidze, R. King, V. Kotzev, O. Lenk, S. Mahmoud, A. Mishin, M. Nadariya, A. Ouzounis, D. Paradissis, Y. Peter, M. Prilepin, R. Reilinger, I. Sanli, H. Seeger, A. Tealeb, M. N. Toksöz, and G. Veis, Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res., 105, 5695–5719, 2000.

    Article  Google Scholar 

  49. McKenzie, D. P., Active tectonics of Mediterranean region, Geophys. J. R. Astr. Soc., 30, 109–185, 1972.

  50. McKenzie, D. P., Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions, Geophys. J. R. Astr. Soc., 55, 217–254, 1978.

    Article  Google Scholar 

  51. Nagata, T., Rock Magnetism, 350 pp., Maruzen, Tokyo, 1961.

    Google Scholar 

  52. Ogawa, Y., Deep crustal resistivity structure revealed by wide-band magnetotellurics; Tohoku and Hokkaido region, Ph.D. Thesis, Univ. of Tokyo, Japan, 1992.

    Google Scholar 

  53. Ogawa, Y., M. Mishina, T. Goto, H. Satoh, N. Oshiman, T. Kasaya, Y. Takahashi, T. Nishitani, S. Sakanaka, M. Uyeshima, Y. Takahashi, Y. Honkura, and M. Matsushima, Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan back arc, Geophys. Res. Lett., 28, 3741–3744, 2001.

    Article  Google Scholar 

  54. Okubo, Y. and T. Matsunaga, Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity, J. Geophys. Res., 99(B11), 22363–22371, 1994.

    Article  Google Scholar 

  55. Okubo, Y., J. R. Graf, R. O. Hansen, K. Ogawa, and H. Tsu, Curie point depths of the island of Kyushu and surrounding areas, Japan, Geophysics, 53, 481–494, 1985.

    Article  Google Scholar 

  56. Okubo, Y., H. Tsu, and K. Ogawa, Estimation of curie point temperature and geothermal structure of island arc of Japan, Tectonophysics, 159, 279–290, 1989.

    Article  Google Scholar 

  57. Özgül, N., Toroslarin bazi temel jeolojik özellikleri, T. J. K. Bült., 19, 65–78, 1976 (in Turkish with English abstract).

    Google Scholar 

  58. Özgül, N., S. Bölükbaşi, H. Alkan, H. Öztaş, and M. Korucu, Göller bölgesinin tektono-stratigrafik birlikleri, Ozan Sungurlu Semp. Bild., edited by S. Turgut, pp. 213–237, Turkey, 1991 (in Turkish with English abstract).

  59. Özkaya, İ., Origin of the allochthons in the Lycian belt, Southwest Turkey, Tectonophysics, 177, 367–379, 1990.

    Article  Google Scholar 

  60. Pasquare, G., S. Poli, L. Vezzoli, and A. Zanchi, Continental arc volcanism and tectonic setting in Central Anatolia, Turkey, Tectonophysics, 146, 217–230, 1988.

    Article  Google Scholar 

  61. Paton, S., Active normal faulting, drainage patterns and sedimentation in southwestern Turkey, Journal of the Geological Society, 149, 1031–1044, 1992.

    Article  Google Scholar 

  62. Pinar, A., Source inversion of the 1 October, 1995, Dinar earthquake (Ms=6.1): a rupture model with implications for seismotectonics in SW Turkey, Tectonophysics, 292, 255–266, 1998.

    Article  Google Scholar 

  63. Reilinger, R. E., S. C. McClusky, M. B. Oral, R. W. King, M. N. Toksöz, A. A. Barka, I. Kinik, O. Lenk, and I. Sanli, Global Positioning System measurements of present-day crustal movements in the Arabia-Africa- Eurasia plate collision zone, J. Geophys. Res., 102, 9983–9999, 1997.

    Article  Google Scholar 

  64. Robertson, A. H. F., Tectonic significance of the Eratosthenes Seamount: a continental fragment in the process of collision with a subduction zone in the eastern Mediterranean (Ocean Drilling Program Leg 160), Tectonophysics, 298, 63–82, 1998.

    Article  Google Scholar 

  65. Saunders, P., K. Priestley, and T. Taymaz, Variations in the crustal structure beneath western Turkey, Geophys. J. Int., 134, 373–389, 1998.

    Article  Google Scholar 

  66. Shuey, R. T., D. K. Schellinger, A. C. Tripp, and L. B. Alley, Curie depth determination from aeromagnetic spectra, Geophys. J. R. Astr. Soc., 50, 75–101, 1977.

    Article  Google Scholar 

  67. Sibson, R. H., Fault zone models, heat flow and the depth distribution of earthquakes in the continental crust of the United States, Bull. Seismol. Soc. Am., 72, 151–163, 1982.

    Google Scholar 

  68. Smith, R. B., R. T. Shuey, R. O. Freidline, R. M. Otis, and L. B. Alley, Yellowstone Hot Spot: New magnetic and seismic evidence, Geology, 2, 451–455, 1974.

    Article  Google Scholar 

  69. Smith, R. B., R. T. Shuey, J. R. Pelton, and J. P. Bailey, Yellowstone hot spot: Contemporary tectonics and crustal properties from earthquake and aeromagnetic data, J. Geophys. Res., 82, 3665–3676, 1977.

    Article  Google Scholar 

  70. Spector, A. and F. S. Grant, Statistical models for interpreting aeromagnetic data, Geophysics, 35, 293–302, 1970.

    Article  Google Scholar 

  71. Stampolidis, A. and G. N. Tsokas, Curie Point Depths of Macedonia and Thrace, N. Greece, Pure and Appl. Geop., 159, 2659–2671, 2002.

    Article  Google Scholar 

  72. Şengör, A. M. C. and Y. Yilmaz, Tethyan evolution of Turkey: a plate tectonic approach, Tectonophysics, 75, 181–241, 1981.

    Article  Google Scholar 

  73. Şengör, A. M. C., N. Görür, and F. şaroğlu, Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, Strike-slip Faulting and Basin Formation, edited by K. T. Biddle and N. Christie-Blick, Soc. Econ. Paleon. Min. Spec. Pub., 37, 227–264, 1985.

    Google Scholar 

  74. Şimşek, Ş., An Overview of Geothermal Developments in Turkey, ITIT International Symposium extended abstracts, 17–23, Tokyo, Japan, 2001.

    Google Scholar 

  75. Tanada, T., Seismicity in the northeast area of Izu Peninsula, Japan, comparing with three-dimensional velocity structure and temperature distribution of geothermal water, Tectonophysics, 306, 449–460, 1999.

    Article  Google Scholar 

  76. Tanaka, A., Y. Okubo, and O. Matsubayashi, Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia, Tectonophysics, 306, 461–470, 1999.

    Article  Google Scholar 

  77. Tankut, A., M. Wilson, and T. Yihunie, Geochemistry and tectonic setting of Tertiary volcanism in the Güvem area, Anatolia, Turkey, J. Volcan. Geoth. Res., 85, 285–301, 1998.

    Article  Google Scholar 

  78. Taymaz, T. and S. P. Price, The 1971 May 12 Burdur earthquake sequence, SW Turkey: a synthesis of seismological and geological observations, Geophys. J. Int., 108, 589–603, 1992.

    Article  Google Scholar 

  79. Taymaz, T., J. Jackson, and D. McKenzie, Active tectonics of the north and central Aegean Sea, Geophys. J. Int., 106, 433–490, 1991.

    Article  Google Scholar 

  80. Temel, A., M. N. Gündoğdu, and A. Gourgaud, Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey, J. Volcan. Geoth. Res., 85, 327–354, 1998.

    Article  Google Scholar 

  81. Tezcan, A. K., Geothermal studies, their present status and contribution to heat flow contouring in Turkey, Terrestrial Heat Flow in Europe, edited by V. Cermak and L. Rybach, pp. 283–291, Springer, Berlin, 1979.

  82. Tezcan, A. K. and İ. Turgay, Heat Flow Map of Turkey, General Directorate of Mineral Research and Exploration (MTA), Department of Geophysics Research, Ankara (unpubl.), 1989 (in Turkish).

    Google Scholar 

  83. Toprak, V. and M. C. Göncüoğlu, Tectonic control on the development of the Neogene-Quaternary Central Anatolian Volcanic Province, Turkey, Geol. J., 28, 357–369, 1993.

    Article  Google Scholar 

  84. Tsokas, G. N., R. O. Hansen, and M. Fytikas, Curie point depth of Island of Crete (Greece), Pure and Appl. Geop., 152, 747–757, 1998.

    Article  Google Scholar 

  85. Yilmaz Y., E. Yigitbaş, and Ş. C. Genç, Ophiolitic and metamorphic assemblages of southeast Anatolia and their significance in the geological evolution of the orogenic belt, Tectonics, 12, 1280–1297, 1993.

    Article  Google Scholar 

  86. Vacquier, V. and J. Affleck, A Computation of average depth the bottom of the Earth’s magnetic crust, based on a statistical study of local magnetic anomalies, Trans. Amer. Geophys. Union, 22, 446–450, 1941.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Nuri Dolmaz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dolmaz, M.N., Ustaömer, T., Hisarli, Z.M. et al. Curie Point Depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. Earth Planet Sp 57, 373–383 (2005). https://doi.org/10.1186/BF03351821

Download citation

Key words

  • Curie Point Depth (CPD)
  • thermal structure
  • SW Turkey
  • aeromagnetic data
  • seismicity