Skip to main content

Simultaneous ground- and satellite-based airglow observations of geomagnetic conjugate plasma bubbles in the equatorial anomaly

Abstract

We compare, for the first time, geomagnetically-conjugate plasma bubbles observed by ground-based OI 630.0-nm all-sky imagers at Shigaraki, Japan (34.8°N, 136.1°E; magnetic latitude 25.4°N) and Darwin, Australia (12.4°S, 131.0°E; magnetic latitude 22.0°S), with global-scale plasma structures (≈10,000 km in longitude) in the equatorial anomaly simultaneously detected with an OI 135.6-nm imager on the IMAGE satellite at ≈7 earth radii. As found previously, global-scale plasma structures in both hemisphere imaged by IMAGE consist of an array of geomagnetically-conjugate small- to medium-scale (a few hundreds to 1000 km in longitude) wavy structures that move to the east at ≈100 ms−1. We find the following: 1) plasma bubbles detected with the allsky imagers reach an apex altitude of ≈1800 km over the geomagnetic equator while moving to the east at ≈100 m s−1 with spacings of 200–250 km. 2) Bubbles observed with the all-sky imagers and IMAGE are embedded within the small- to medium-scale wavy structures, and some of them are located near the crest of an enhanced electron density region associated with the wavy structures. 3) The bubbles and wavy structures that are generated near sunset slant to the west with increasing latitude in both hemispheres, and tilts do not change with longitude (i.e., local time). The results suggest that the generation and evolution of plasma bubbles are closely related to those of the small- to medium-scale plasma structures.

References

  1. Christensen, A. B. et al., Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission, J. Geophys. Res., 108(A12), 1451, doi:10.1029/2003JA009918, 2003.

    Article  Google Scholar 

  2. Immel, T. J., S. B. Mende, H. U. Frey, L. M. Peticolas, and E. Sagawa, Determination of low latitude plasma drift speeds from FUV images, Geophys. Res. Lett., 30(18), 1945, doi:10.1029/2003GL017573, 2003.

    Article  Google Scholar 

  3. Immel, T. J., H. U. Frey, S. B. Mende, and E. Sagawa, Global observations of the zonal drift speed of equatorial ionospheric plasma bubbles, Ann. Geophysicae, 22, 3099–3107, 2004.

    Article  Google Scholar 

  4. Kelley, M. C., The Earth’s Ionosphere, Academic Press, San Diego, California, 1989.

    Google Scholar 

  5. Kelley, M. C., M. F. Larsen, C. LaHoz, and J. P. MuClure, Gravity wave initiation of equatorial spread F: A case study, J. Geophys. Res., 86, 9087–9100, 1981.

    Article  Google Scholar 

  6. Kelley, M. C., J. J. Makela, L. J. Paxton, F. Kamalabadi, J. M. Comberiate, and H. Kil, The first coordinated ground-based and space-based optical observations of equatorial plasma bubbles, Geophys. Res. Lett., 30(14), 1766, doi:10.1029/2003 GL017301, 2003.

    Article  Google Scholar 

  7. Kil, H., S.-Y. Su, L. J. Paxton, B. C. Wolven, Y. Zhang, D. Morrison, and H. C. Yeh, Coincident equatorial bubble detection by TIMED/GUVI and ROCSAT-1, Geophys. Res. Lett., 31, L03809, doi:10.1029/2003GL018696, 2004.

    Google Scholar 

  8. Makela, J. J. and M. C. Kelley, Field-aligned 777.4-nm composite airglow images of equatorial plasma depletions, Geophys. Res. Lett., 30(8), 1442, doi:10.1029/2003GL017106, 2003.

    Article  Google Scholar 

  9. Martinis, C., J. V. Eccles, J. Baumgardner, J. Manzano, and M. Mendillo, Latitude dependence of zonal plasma drifts obtained from dual-site airglow observations, J. Geophys. Res., 108(A3), 1129, doi:10.1029/2002JA009462, 2003.

    Article  Google Scholar 

  10. Mende, S. B., H. Heetderks, H. U. Frey, J. M. Stock, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, S. Habraken, E. Renotte, C. Jamar, P. Rochus, J.-C. Gerard, R. Sigler, and H. Lauche, Far ultraviolet imaging from the IMAGE spacecraft. 3. Spectral imaging of Lyman-a and OI 135.6 nm, Space Sci. Rev., 91, 287–318, 2000.

    Article  Google Scholar 

  11. Otsuka, Y., K. Shiokawa, T. Ogawa, and P. Wilkinson, Geomagnetic conjugate observations of equatorial airglow depletions, Geophys. Res. Lett., 29(15), 10.1029/2002GL015347, 2002.

    Google Scholar 

  12. Oya, H., T. Takahashi, and S. Watanabe, Observation of low latitude ionosphere by the impedance probe on board the Honotori satellite, J. Geomag. Geoelectr., 38, 111–123, 1986.

    Article  Google Scholar 

  13. Pimenta, A. A., Y. Sahai, J. A. Bittencourt, M. A. Abdu, H. Takahashi, and M. J. Taylor, Plasma blobs observed by ground-based optical and radio techniques in the Brazilian tropical sector, Geophys. Res. Lett., 31, L12810, doi:10.1029/2004GL020233, 2004.

    Article  Google Scholar 

  14. Rishbeth, H., Polarization fields produced by winds in the equatorial Fregion, Planet. Space Sci., 19, 357–369, 1971.

    Article  Google Scholar 

  15. Röttger, J., Wave-like structures of large-scale equatorial spread-F irregularities, J. Atmos. Terr. Phys., 35, 1195–1206, 1973.

    Article  Google Scholar 

  16. Sagawa, E., T. Maruyama, T. J. Immel, H. U. Frey, and S. B. Mende, Global view of the nighttime low-latitude ionosphere by the IMAGE/ FUV 135.6 nm observations, Geophys. Res. Lett., 30(10), 1534, doi:10.1029/2003GL017140, 2

    Article  Google Scholar 

  17. Shiokawa, K., Y. Katoh, M. Satoh, M. Ejiri, T. Ogawa, T. Nakamura, T. Tsuda, and R. H. Wiens, Development of optical mesosphere thermosphere imagers (OMTI), Earth Planets Space, 51, 887–896, 1999.

    Article  Google Scholar 

  18. Shiokawa, K., Y. Otsuka, T. Ogawa, and P. Wilkinson, Time evolution of high-altitude plasma bubbles imaged at geomagnetic conjugate points, Ann. Geophysicae, 22, 3137–3143, 2004.

    Article  Google Scholar 

  19. Singh, S., F. S. Johnson, and R. A. Power, Gravity wave seeding of equatorial plasma bubbles, J. Geophys. Res., 102, 7399–7410, 1997.

    Article  Google Scholar 

  20. Tsunoda, R. T., On the generation and growth of equatorial backscatter plumes, 2, Structuring of the west wall of upwellings, J. Geophys. Res., 88, 4869–4874, 1983.

    Article  Google Scholar 

  21. Tsunoda, R. T. and B. R. White, On the generation and growth of equatorial backscatter plumes, 1, Wave structure in the bottomside F layer, J. Geophys. Res., 86, 3610–3616, 1981.

    Article  Google Scholar 

  22. Watanabe, S. and H. Oya, Occurrence characteristics of low latitude ionosphere irregularities observed by impedance probe on board the Hinotori satellite, J. Geomag. Geoelectr., 38, 125–149, 1986.

    Article  Google Scholar 

  23. Woodman, R. F. and C. LaHoz, Radar observations of F region equatorial irregularities, J. Geophys. Res., 81, 5447–5466, 1976.

    Article  Google Scholar 

  24. Zalesak, S. T., S. L. Ossakow, and P. K. Chaturvedi, Nonlinear equatorial spread F: The effect of neutral winds and background Pedersen conductivity, J. Geophys. Res., 87, 151–166, 1982.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tadahiko Ogawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogawa, T., Sagawa, E., Otsuka, Y. et al. Simultaneous ground- and satellite-based airglow observations of geomagnetic conjugate plasma bubbles in the equatorial anomaly. Earth Planet Sp 57, 385–392 (2005). https://doi.org/10.1186/BF03351822

Download citation

Key words

  • Equatorial ionosphere
  • equatorial anomaly
  • plasma bubble
  • airglow