Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Simulation of gigantic jets propagating from the top of thunderclouds to the ionosphere

Abstract

A randomly stepped leader propagation model is developed to study gigantic jets, a new type of lightning, connecting thunderclouds to the ionosphere. The thundercloud is considered as one electrode igniting gigantic jets and the ionosphere is assumed as the other. The propagation of stepped leader is considered as a field controlled random growth process. The electric field is produced due to the thundercloud charges and the self-consistently propagating leader. A leader propagation probability is proposed to determine whether the leader grows at the next step and what the step direction of the leader is in case of growth. The results show that leader propagation spans ~72 km from igniting position to the ionosphere. The simulation of leader propagation appears to be in agreement with the structure of observed gigantic jets.

References

  1. Babaeva, N. Yu. and G. V. Naidis, Dynamics of positive and negative streamers in air in weak uniform electric fields, IEEE Trans. Plasma Sci., 25, 375–379, 1997.

    Article  Google Scholar 

  2. Bazelyan, E. M. and Yu. P. Raizer, Spark Discharge, CRC Press, Florida, 1998.

    Google Scholar 

  3. Dejnakarintra, M. and C. G. Park, Lightning-induced electric fields in the ionosphere, J. Geophys. Res., 79, 1903–1910, 1974.

    Article  Google Scholar 

  4. Femia, N., L. Niemeyer, and V. Tucci, Fractal characteristics of electrical discharges: experiments and simulation, J. Phys. D: Appl. Phys., 26, 619–627, 1993.

    Article  Google Scholar 

  5. Hockney, R. W. and J. W. Eastwood, Computer Simulation using Particles, IOP Publishing Ltd, Bristol, 1988.

    Google Scholar 

  6. Kagawa, Y., FEM Program 1, Morikita Shuppan Co., Tokyo, 1994 (in Japanese).

    Google Scholar 

  7. Niemeyer, L., L. Pietronero, and H. J. Wiesmann, Fractal dimension of dielectric breakdown, Phys. Rev. Lett., 52, 1033–1036, 1984.

    Article  Google Scholar 

  8. Niemeyer, L., L. Ullrich, and N. Wiegart, The mechanism of leader breakdown in electronegative gases, IEEE Tran. Electr. Insul., 24, 309–324, 1989.

    Article  Google Scholar 

  9. Pasko, V. P., U. S. Inan, and T. F. Bell, Fractal structure of sprites, Geophys. Res. Lett., 27, 497–500, 2000.

    Article  Google Scholar 

  10. Pasko, V. P., U. S. Inan, and T. F. Bell, Mesosphere-troposphere coupling due to sprites, Geophys. Res. Lett., 28, 3821–3824, 2001.

    Article  Google Scholar 

  11. Pasko, V. P. and J. J. George, Three-dimensional modeling of blue jet and blue starters, J. Geophys. Res., 107, 1458, doi:1029/2002JA009473, 2002.

    Article  Google Scholar 

  12. Petrov, N. I. and G. N. Petrova, Physical mechanisms for intra-cloud lightning discharges, Tech. Phys., 38, 287–290, 1993.

    Google Scholar 

  13. Petrov, N. I. and G. N. Petrova, Physical mechanisms for the development of lightning discharges between a thundercloud and the ionosphere, Tech. Phys., 44, 472–475, 1999.

    Article  Google Scholar 

  14. Petrov, N. I., G. N. Petrova, and F. D’Alessandro, Quantification of the probability of lightning strikes to structures using a fractal approach, IEEE Trans. Diele. Electr. Insul., 10, 641–654, 2003.

    Article  Google Scholar 

  15. Potter, D., Computational Physics, John Wiley, New York, 1973.

    Google Scholar 

  16. Raizer, Yu. P., Gas Discharge Physics, Springer-Verlag, Heidelberg, 1991.

    Google Scholar 

  17. Raizer, Yu. P., G. M. Milikh, M. N. Shneider, and S. V. Novakovski, Long streamers in the upper atmposphere above thundercloud, J. Phys. D: Appl. Phys., 31, 3255–3264, 1998.

    Article  Google Scholar 

  18. Rowland, H. L., Theories and simulations of elves, sprites and blue jets, J. Atmos. Terr. Phys., 60, 831–844, 1998.

    Article  Google Scholar 

  19. Su, H. T., R. R. Hsu, A. B. Chen, Y. C. Wang, W. S. Hsiao, W. C. Lai, L. C. Lee, M. Sato, and H. Fukunishi, Gigantic jets between a thundercloud and the ionosphere, Nature, 423, 974–976, 2003.

    Article  Google Scholar 

  20. Tong, L., F. X. Zgainski, J. C. Vérité, P. Thomas, and A. Comte, Discharge simulation in SF6, Proc. of the XIIIth Int. Symposium on Physics of Switching Arc, Brno, Czech Republic, 1, 29–32, 1998.

    Google Scholar 

  21. Tong, L., K. Nanbu, and H. Fukunishi, Numerical analysis of initiation of gigantic jets connecting thunderclouds to the ionosphere, Earth Planets Space, 56, 1059–1065, 2004a.

    Article  Google Scholar 

  22. Tong, L., K. Nanbu, Y. Hiraki, and H. Fukunishi, Particle modeling of the electrical discharge in the upper atmosphere above thundercloud, J. Phys. Soc. Jpn., 73, 2438–2443, 2004b.

    Article  Google Scholar 

  23. Tong, L., K. Nanbu, and H. Fukunishi, Randomly stepped model for upward electrical discharge from the top of thundercloud, J. Phys. Soc. Jpn., 74, 1093–1095, 2005.

    Article  Google Scholar 

  24. Uman, M. A., The Lightning Discharge, Dover, Mineola, N. Y., 2001.

    Google Scholar 

  25. US Standard Atmosphere 1976, NOAA-S/T 76-1562, US Government Printing Office, Washington, DC, 1976.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lizhu Tong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tong, L., Nanbu, K. & Fukunishi, H. Simulation of gigantic jets propagating from the top of thunderclouds to the ionosphere. Earth Planet Sp 57, 613–617 (2005). https://doi.org/10.1186/BF03351840

Download citation

Key-words

  • Lightning
  • gigantic jet
  • leader modeling
  • thundercloud
  • ionosphere