Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Latitudinal and longitudinal displacement of cusp ion precipitation controlled by IMF By and Bz

Abstract

Dependence of the location of the cusp precipitation on the orientation of interplanetary magnetic field (IMF) is investigated using data from the Akebono satellite taken at altitudes of several thousands of km. More than a hundred cusp precipitation events have been identified with the low-energy particle detector (LEP) onboard Akebono. The observed energy spectra of ions precipitating at the cusp are dispersed by the convection motion of field lines. We pay special attention to the location where precipitating ions have the highest energy in the energy dispersion curve as recorded along the satellite’s path; such location would represent the one nearest to the foot point of the dayside reconnection line (we here assume that the cusp ion injection is triggered by the magnetopause reconnection). We study this location as a proxy for the foot point of the reconnection line and call it „ion entry point” in this paper. Our analysis shows that the location of the „ion entry point” has a strong dependence on the sign and magnitude of IMF By and Bz. By and Bz have almost orthogonal effects on the location of the entry point, with the latitudinal displacement linearly related to Bz, and the longitudinal displacement linearly related to By. We find that the Bz dependence of the ion entry point is represented by a single regression line for entire range of Bz irrespective of its north/south polarity. We also find that the By dependence is larger for positive Bz than for negative Bz. The distribution of ion entry points for positive IMF By is almost a mirror image of that for negative IMF By with respect to the noon-midnight meridian plane. We discuss the dependence of the „ion entry point” on the IMF from the viewpoint of where and how the magnetopause reconnection (merging) occurs for various orientations of IMF.

References

  1. Aparicio, B., B., Thelin, and R. Lundin, The polar cusp from a particle point of view: A statistical study based on Viking data, J. Geophys. Res., 96, 14023–14031, 1991.

    Article  Google Scholar 

  2. Asai, K., K. Maezawa, N. Kaya, and T. Mukai, Latitudinal displacement of cusp ion precipitation: Akebono observations, Adv. Space Res., 23, 1761–1764, 1999.

    Article  Google Scholar 

  3. Basinska, E. M., W. J. Burke, N. C. Maynard, W. J. Hughes, J. D. Winningham, and W. B. Hanson, Small-scale electrodynamics of the cusp with northward Interplanetary Magnetic Field, J. Geophys. Res., 97, 6369–6379, 1992.

    Article  Google Scholar 

  4. Burch, J. L., P. H. Reiff, R. A. Heelis, J. D. Winningham, W. B. Hanson, C. Gurgiolo, J. D. Menietti, R. A. Hoffman, and J. N. Barfield, Plasma injection and transport in the mid-altitude polar cusp, Geophys. Res. Lett., 9, 921–924, 1982.

    Article  Google Scholar 

  5. Chandler, M. O., S. A. Fuselier, M. Lockwood, and T. E. Moore, Evidence of component merging equatorward of the cusp, J. Geophys. Res., 104, 22,623–22,634, 1999.

    Article  Google Scholar 

  6. Cowley, S. W. H., The couses of convection in the Earth’s magnetosphere: A review of developments during IMS, Rev. Geophys., 20, 531–565, 1982.

    Article  Google Scholar 

  7. Cowley, S. W. H., J. P. Morelli, and M. Lockwood, Dependence of convective flows and particle precipitation in the high-latitude dayside ionosphere on the X and Y components of the interplanetary magnetic field, J. Geophys. Res., 96, 5557–5564, 1991.

    Article  Google Scholar 

  8. Crooker, N. U., J. Berchem, and C. T. Russell, Cusp displacement at the magnetopause for large IMF Y component, J. Geophys. Res., 92, 13467–13471, 1987.

    Article  Google Scholar 

  9. Crooker, N. U., J. G. Lyon, and J. A. Fedder, MHD model merging with IMF By: Lobe cells, sunward polar cap convection, and overdraped lobes, J. Geophys. Res., 103, 9143–9152, 1998.

    Article  Google Scholar 

  10. Farrugia, C. J., P. E. Sandholt, R. B. Torbert, and N. Østgaard, Temporal and spatial aspects of the cusp inferred from local and global ground- and space-based observations in a case study, J. Geophys. Res., 109, A04209, 2004.

  11. Frey, H. U., S. B. Mende, T. J. Immel, S. A. Fuselier, E. S. Claflin, J.-C. Gérard, and B. Hubert, Proton aurora in the cusp, J. Geophys. Res., 107, 1091, 2002.

    Article  Google Scholar 

  12. Frey, H. U., S. B. Mende, S. A. Fuselier, T. J. Immel, and N. Østgaard, Proton aurora in the cusp during southward IMF, J. Geophys. Res., 108, 1277, 2003.

    Article  Google Scholar 

  13. Fuselier, S. A., H. U. Frey, K. J. Trattner, S. B. Mende, and J. L. Burch, Cusp aurora dependence on interplanetary magnetic field Bz, J. Geophys. Res., 107, 1111, 2002.

    Article  Google Scholar 

  14. Fuselier, S. A., S. B. Mende, T. E. Moore, H. U. Frey, S. M. Petrinec, E. S. Claflin, and M. R. Collier, Cusp dynamics and ionospheric outflow, Space Science Reviews, 109, 285–312, 2003.

    Article  Google Scholar 

  15. Gosling, J. T., M. F. Thomsen, S. J. Bame, R. C. Elphic, and C. T. Russell, Plasma flow reversals at the dayside magnetopause and the origin of asymmetric polar cap convection, J. Geophys. Res., 95, 8073–8084, 1990.

    Article  Google Scholar 

  16. Hakura, Y., Tables and maps of geomagnetic coordinates corrected by the higher order spherical harmonic terms, Rep. Ionos. Space Res. Japan, 19, 121–157, 1965.

    Google Scholar 

  17. Hayakawa, H., et al., Electric field measurement on the Akebono (EXOSD) satellite, J. Geomag. Geoelectr., 42, 371–384, 1990.

    Article  Google Scholar 

  18. Heelis, R. A., The effects of interplanetary magnetic field orientation on dayside high-latitude ionospheric convection, J. Geophys. Res., 89, 2873–2880, 1984.

    Article  Google Scholar 

  19. Karlson, K. A., M. Oieroset, J. Moen, and P. E. Sandholt, A statistical study of flux transfer event signatures in the dayside aurora: The IMF By-related prenoon-postnoon asymmetry, J. Geophys. Res., 101, 59–68, 1996.

    Article  Google Scholar 

  20. Kremser, G. and R. Lundin, Average spatial distributions of energetic particles in the midaltitude cusp/cleft region observed by Viking, J. Geophys. Res., 95, 5753–5766, 1990.

    Article  Google Scholar 

  21. Lockwood, M., Relationship of dayside precipitation to the open-closed separatrix and the pattern of convection flow, J. Geophys. Res., 102, 17475–17487, 1997.

    Article  Google Scholar 

  22. Lockwood, M., S. W. Cowley, P. E. Sandholt, and U. P. Lovhaug, Causes of plasma flow bursts and dayside auroral transients: an evaluation of two models invoking reconnection pulses and chaned in the Y component of the magnetosheath field, J. Geophys. Res., 100, 7613–7626, 1995.

    Article  Google Scholar 

  23. Lockwood, M., S. W. H. Cowley, and T. G. Onsager, Ion acceleration at both the interior and exterior Alfven waves associated with the magnetopause reconnection site: Signatures in cusp precipitation, J. Geophys. Res., 101, 21501–21513, 1996.

    Article  Google Scholar 

  24. Maezawa, K., Magnetospheric convection induced by the positive and negative Z components of the interplanetary magnetic field: quantitative analysis using polar cap magnetic records, J. Geophys. Res., 81, 2289–2303, 1976.

    Article  Google Scholar 

  25. Maynard, N. C., W. J. Burke, P. E. Sandholt, J. Moen, D. M. Ober, M. Lester, D. R. Weimer, and A. Egeland, Observations of simultaneous effects of merging in both hemispheres, J. Geophys. Res., 106, 24551–24578, 2001.

    Article  Google Scholar 

  26. Menietti, J. D. and J. L. Burch, Spatial extent of the plasma injection region in the cusp-magnetosheath interface, J. Geophys. Res., 93, 105–113, 1988.

    Article  Google Scholar 

  27. Mukai, T., N. Kaya, E. Sagawa, M. Hirahara, W. Miyake, T. Obara, H. Miyaoka, S. Machida, H. Yamagishi, M. Ejiri, H. Matsumoto, and T. Itoh, Low energy charged particle observation in the „auroral” magnetosphere: First results from Akebono (EXOS-D) satellite, J. Geomag. Geoelectr., 42, 479–496, 1990.

    Article  Google Scholar 

  28. Newell, P. T. and C.-I. Meng, Cusp width and Bz: Observations and conceptual model, J. Geophys. Res., 92, 13673–13678, 1987.

    Article  Google Scholar 

  29. Newell, P. T. and C.-I. Meng, The cusp and the cleft/boundary layer: Low-altitude identification and statistical local time variation, J. Geophys. Res., 93, 14549–14556, 1988.

    Article  Google Scholar 

  30. Newell, P. T., C.-I. Meng, D. G. Sibeck, and R. Lepping, Some low-altitude cusp dependencies on the interplanetary magnetic field, J. Geophys. Res., 94, 8921–8927, 1989.

    Article  Google Scholar 

  31. Newell, P. T., W. J. Burke, C.-I. Meng, E. R. Sanches, and M. E. Greenspan, Identification and observations of the plasma mantle at low altitude, J. Geophys. Res., 96, 35–45, 1991a.

    Article  Google Scholar 

  32. Newell, P. T., W. J. Burke, C.-I. Meng, E. R. Sanches, M. E. Greenspan, and C. R. Clauer, The low-latitude boundary layer and the boundary plasma sheet at low altitude: Prenoon precipitation regions and convection reversal boundaries, J. Geophys. Res., 96, 21013–21023, 1991b.

    Article  Google Scholar 

  33. Onsager, T. G., C. A. Kletzing, J. B. Austin, and H. MacKiernan, Model of magnetosheath plasma in the magnetosphere: Cusp and mantle particles at low-altitudes, Geophys. Res. Let., 20, 479–482, 1993.

    Article  Google Scholar 

  34. Onsager, T. G., S.-W. Chang, J. D. Perez, J. B. Austin, and L. X. Janoo, Low-altitude observations and modeling of quasi-steady magnetopause reconnection, J. Geophys. Res., 100, 11831–11843, 1995.

    Article  Google Scholar 

  35. Onsager, T. G., J. D. Scudder, M. Lockwood, and C. T. Russell, Reconnection at the high-latitude magnetopause during northward interplanetary magnetic field conditions, J. Geophys. Res., 106, 25467–25488, 2001.

    Article  Google Scholar 

  36. Reiff, P. H., T. W. Hill, and J. L. Burch, Solar wind plasma injection at the dayside magnetospheric cusp, J. Geophys. Res., 82, 479–491, 1977.

    Article  Google Scholar 

  37. Ridley, A. J., G. Lu, C. R. Clauer, and V. O. Papitashvili, A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique, J. Geophys. Res., 103, 4023–4040, 1998.

    Article  Google Scholar 

  38. Rosenbauer, H., H. Grunwaldt, M. D. Montgomery, G. Paschmann, and N. Sckopke, Heos 2 plasma observations in the distant polar magnetosphere: the plasma mantle, J. Geophys. Res., 80, 2723–2737, 1975.

    Article  Google Scholar 

  39. Sandholt, P. E. and C. J. Farrugia, Does the aurora provide evidence for the occurrence of antiparallel magnetopause reconnection?, J. Geophys. Res., 108, 1466, 2003.

    Article  Google Scholar 

  40. Shue, J.-H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer, A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497–9511, 1997.

    Article  Google Scholar 

  41. Sibeck, D. G., R. E. Lopez, and E. C. Roelof, Solar wind control of the magnetopause shape, location, and motion, J. Geophys. Res., 96, 5489–5495, 1991.

    Article  Google Scholar 

  42. Stasiewicz, K., A global model of gyroviscous field line merging at the magnetopause, J. Geophys. Res., 96, 77–86, 1991.

    Article  Google Scholar 

  43. Stubbs, T. J., P. J. Cargill, M. Lockwood, M. Grande, B. J. Kellett, and C. H. Perry, Extended cusp-like regions and their dependence on the Polar orbit, seasonal variations, and interplanetary conditions, J. Geophys. Res., 109, A09210, 2004.

  44. Twitty, C., T. D. Phan, G. Paschmann, B. Lavraud, H. Rème, and M. Dunlop, Cluster survey of cusp reconnection and its IMF dependence, Geophys. Res. Lett., 31, L19808, 2004.

  45. Woch, J. and R. Lundin, Magnetosheath plasma precipitation in the polar cusp and its control by the interplanetary magnetic field, J. Geophys. Res., 97, 1421–1430, 1992.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Keiko T. Asai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asai, K.T., Maezawa, K., Mukai, T. et al. Latitudinal and longitudinal displacement of cusp ion precipitation controlled by IMF By and Bz. Earth Planet Sp 57, 627–641 (2005). https://doi.org/10.1186/BF03351842

Download citation

Key words

  • Cusp
  • cusp precipitation
  • magnetic reconnection
  • dayside merging
  • interplanetary magnetic field