Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Electrodynamics in the duskside inner magnetosphere and plasmasphere during a super magnetic storm on March 13–15, 1989

Abstract

Variations of cold plasma density distribution and large-scale electric field in the inner magnetosphere and plasmasphere during a geomagnetic storm were investigated by using the observation data of the Akebono satellite which has been carried out for more than 15 yeas since March, 1989. We focus on the super geomagnetic storm on March 13–15, 1989, for which the maximum negative excursion of the Dst index was −589 nT. During the main phase of the magnetic storm, the strong convection electric field with a spatially inhomogeneous structure appears in the inner magnetosphere between L = 2.0 and 7.0. The averaged intensity of the electric field was in a range of about 2.5–9.2 mV/m. The spatial distribution in the magnetic equatorial region indicates that the magnitude within an L-value range of 2.2–7.0 is much larger than that observed at L = 7.0–10.0. Associated with the appearance of the strong convection electric field, the cold plasma density near the trough region around L = 3.0–6.0 was enhanced with one or two order magnitude, compared with that in the magnetically quiet condition. This implies that a mount of the ionospheric plasma may be supplied from the topside ionosphere into the trough and plasmasphere regions by the frictional heating due to the fast plasma convection in the ionosphere as pointed out by previous studies on the enhancements of plasma density in these regions, based on incoherent scatter radar and total electron content (TEC) observations (e.g., Yeh and Foster, 1990; Foster et al., 2004). During the recovery phase of the magnetic storm, the convection electric field observed in the inner magnetosphere and plasmasphere regions recovers within 3-4 days almost up to the level of the magnetically quiet condition.

References

  1. Anderson, P. C., Subauroral ion drifts (SAID): Previous results and present studies, in Proceedings of the 1995 Cambridge Symposium/Workshop in Geoplasma Physics on “Multiscale Phenomena in Space Plasmas”, edited by T. Chang, and J. R. Jasperse, pp. 15, Mass. Inst. of Technol. Cent. for Space Res., Cambridge, 1996.

    Google Scholar 

  2. Anderson, P. C., W. B. Hanson, and R. A. Heelis, The ionospheric signatures of rapid subauroral ion drifts, J. Geophys. Res., 96, 5785–5792, 1991.

    Article  Google Scholar 

  3. Anderson, P. C., W. B. Hanson, R. A. Heelis, J. D. Craven, D. N. Baker, and L. A. Frank, A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution, J. Geophys. Res., 98, 6069–6078, 1993.

    Article  Google Scholar 

  4. Anderson, P. C., D. L. Carpenter, K. Tsuruda, T. Mukai, and F. J. Rich, Multisatellite observations of rapid subauroral ion drift (SAID), J. Geophys. Res., 106, 29585–29599, 2001.

    Article  Google Scholar 

  5. Araki, T., A physical model of the geomagnetic sudden commencement, in Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, Geophys. Monogr. Ser., vol. 81, edited by M. J. Engebretson, K. Takahashi, and M. Scholer, pp. 183–200, AGU, Washington, D. C., 1994.

    Google Scholar 

  6. Axford, W. I., Magnetospheric convection, Rev. Geophys. Space Phys., 7, 421–459, 1969.

    Article  Google Scholar 

  7. Axford, W. I. and C. O. Hines, A unifying theory of high-latitude geophysical phenomena and geomagnetic storms, Can. J. Phys., 39, 1433–1464, 1961.

    Article  Google Scholar 

  8. Barakat, A. R. and R. W. Schunk, O+ ions in the polar wind, J. Geophys. Res., 88, 7887–7894, 1983.

    Article  Google Scholar 

  9. Baumjohann, W. and G. Haerendel, Magnetospheric convection observed between 0600 and 2100 LT: Solar wind and IMF dependence, J. Geophys. Res., 90, 6370–6378, 1985.

    Article  Google Scholar 

  10. Baumjouhann, W., G. Haerendel, and F. Melzner, Magnetospheric convection observed between 0600 and 2100 LT: Variations with Kp, J. Geophys. Res., 90, 393–398, 1985.

    Article  Google Scholar 

  11. Blake, J. B., W. A. Kolasinski, R. W. Fillius, and E. G. Mullen, Injection of electrons and protons with energies of tens of MeV into L < 3 on March 24, 1991, Geophys. Res. Lett., 19, 821–824, 1992.

    Article  Google Scholar 

  12. Brice, N. M., Bulk motion of the magnetosphere, J. Geophys. Res., 72, 5193–5211, 1967.

    Article  Google Scholar 

  13. Burke, W. J., A. G. Rubin, N. C. Maynard, L. C. Gentile, P. J. Sultan, F. J. Rich, O. de La Beaujardiere, C. Y. Huang, and G. R. Wilson, Ionospheric disturbances observed by DMSP at middle to low latitudes during the magnetic storm of June 4–6, 1991, J. Geophys. Res., 105, 18391–18405, 2000.

    Article  Google Scholar 

  14. Cahill, L. J., N. G. Waite, M. J. Engebretson, and M. Sugiura, Toroidal standing waves excited by a storm sudden commencement: DE1 observations, J. Geophys. Res., 95, 7857–7867, 1990.

    Article  Google Scholar 

  15. Carpenter, D. L., Whistler studies of the plasmapause in the magnetosphere, I. Temporal variations in the position of the knee and some evidence on plasma motions near the knee, J. Geophys. Res., 71, 693–709, 1966.

    Article  Google Scholar 

  16. Carpenter, D. L. and R. R. Anderson, An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97, 1097–1108, 1992.

    Article  Google Scholar 

  17. Chappell, C. R., T. E. Moore, and J. H. Waite, Jr., The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere, J. Geophys. Res., 92, 5896–5910, 1987.

    Article  Google Scholar 

  18. Clauer, C. R. and Y. Kamide, DP1 and DP2 current systems for the March 22, 1979, substorms, J. Geophys. Res., 90, 1343–1354, 1985.

    Article  Google Scholar 

  19. Daglis, I. A., R. M. Thorne, W. Baumjohann, and S. Orsini, The terrestrial ring current: Origin, formation and decay, Rev. Geophys., 37, 407–438, 1999.

    Article  Google Scholar 

  20. Dungey, J. W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47–48, 1961.

    Article  Google Scholar 

  21. Dungey, J. W., The structure of the exosphere, or Adventures in velocity space, in Geophysics, The Earth’s Environment, edited by C. DeWitt, J. Hieblot, and A. Lebeau, pp. 526–537, Gordon and Breach New York, 1963.

    Google Scholar 

  22. Foster, J. C., A. J. Coster, P. J. Erickson, F. J. Rich, and B. R. Sandel, Stormtime observations of the flux of plasmaspheric ions to the dayside cusp/magnetopause, Geophys. Res. Lett., 31, L08809, doi:10.1029/2004GL020082, 2004.

  23. Galperin, Yu. I., V. N. Ponomarev, Yu. N. Ponomarev, and A. G. Zosimova, Plasma convection in the evning sector of the magnetosphere and the nature of the plasmapause, Kosmicheskie Issledovanya, 18, 669–686, 1975.

    Google Scholar 

  24. Gombosi, T. I. and T. L. Killeen, Effects of thermospheric motions on the polar wind: A time-dependent numerical study, J. Geophys. Res., 92, 4725–4729, 1987.

    Article  Google Scholar 

  25. Gombosi, T. I. and A. F. Nagy, Time-dependent modeling of field-aligned current-generated ion transients in the polar wind, J. Geophys. Res., 94, 359–369, 1989.

    Article  Google Scholar 

  26. Goncharenko, L. P., J. E. Salah, J. C. Foster, and C. Huang, Variations in lower thermosphere dynamics at midlatitudes during intense geomagnetic storms, J. Geophys. Res., 109, A04304, doi:10.1029/2003JA010244, 2004.

  27. Hayakawa, H., T. Okada, M. Ejiri, A. Kadokura, Y.-I. Kohno, K. Maezawa, S. Machida, A. Matsuoka, T. Mukai, M. Nakamura, A. Nishida, T. Obara, Y. Tanaka, F. S. Mozer, G. Haerendel, and K. Tsuruta, Electric field measurement on the Akebono (EXOS-D) satellite, J. Geomag. Geoelectr., 42, 371–385, 1990.

    Article  Google Scholar 

  28. Heelis, R. A., R. A. Spiro, W. B. Hanson, and J. L. Burch, Magnetosphere ionosphere coupling in the mid-latitude trough, Eos Trans. AGU, 57, 990, 1976.

    Google Scholar 

  29. Iyemori, T. and D. R. K. Rao, Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm-substorm relation, Ann. Geophys., 14, 608–618, 1996.

    Article  Google Scholar 

  30. Karlsson, T., G. T. Marklund, and L. G. Blomberg, Subauroral electric fields observed by the Freja satellite: A statistical study, J. Geophys. Res., 103, 4327–4341, 1998.

    Article  Google Scholar 

  31. Kelly, M., The Earth’s Ionosphere, Academic, San Diego, Calif., 1989.

    Google Scholar 

  32. Knott, K., A. Pedersen, and U. Wedeken, GEOS 2 electric field observation during a sudden commencement and subsequent substorm, J. Geophys. Res., 90, 1283–1288, 1985.

    Article  Google Scholar 

  33. Laakso, H. and R. Schmidt, Pc 4–5 pulsation in the electric field at geostationary orbit (GEOS2) triggered by sudden commencements, J. Geophys. Res., 94, 6626–6632, 1989.

    Article  Google Scholar 

  34. Levy, R. H., H. E. Petschek, and G. I. Siscoe, Aerodynamics aspects of magnetospheric flow, AIAA J., 2, 2065–2076, 1964.

    Article  Google Scholar 

  35. Li, X., I. Roth, M. Temerin, J. Wygant, M. K. Hudson, and J. B. Blake, Simulation of the prompt energization and transport of radiation particles during the March 24, 1991 SSC, Geophys. Res. Lett., 20, 2423–2426, 1993.

    Article  Google Scholar 

  36. Lockwood, M., Thermal ion flows in the topside auroral ionosphere and the effects of low-altitude transverse acceleration, Planet. Space Sci., 30, 595–609, 1982.

    Article  Google Scholar 

  37. Lockwood, M. and T. J. Fuller-Rowell, The modeled occurrence of nonthermal plasma in the ionospheric F region and the possible consequences for ion outflows into the magnetosphere, Geophys. Res. Lett., 14, 371–374, 1987.

    Article  Google Scholar 

  38. Lockwood, M., J. H. Waite, Jr., T. E. Moore, J. F. E. Johnson, and C. R. Chappell, A new source of suprathermal O+ ions near the dayside polar cap boundary, J. Geophys. Res., 90, 4099–4116, 1985.

    Article  Google Scholar 

  39. Maynard, N. C. and A. J. Chen, Isolated cold plasma regions: Observations and their relation to possible production mechanisms, J. Geophys. Res., 80, 1009–1013, 1975.

    Article  Google Scholar 

  40. Maynard, N. C., T. L. Aggson, and J. P. Heppner, Magnetospheric observation of large sub-auroral electric fields, Geophys. Res. Lett., 7, 881–884, 1980.

    Article  Google Scholar 

  41. Maynard, N. C., T. L. Aggson, and J. P. Heppner, The plasmaspheric electric field as measured by ISEE 1, J. Geophys. Res., 88, 3981–3990, 1983.

    Article  Google Scholar 

  42. Mozer, F. S., Electric field mapping in the ionosphere at the equatorial plane, Planet Space Sci., 18, 259–263, 1970.

    Article  Google Scholar 

  43. Ness, N. F., The earth’s magnetic tail, J. Geophys. Res., 70, 2989–3005, 1965.

    Article  Google Scholar 

  44. Nishida, A., Formation of plasmapause, or magnetospheric plasma knee by combined action of magnetospheric convection and plasma escape from the tail, J. Geophys. Res., 71, 5669–5679, 1966.

    Article  Google Scholar 

  45. Nishida, A., Coherence of geomagnetic DP-2 fluctuations with interplanetary magnetic variations, J. Geophys. Res., 73, 5549–5559, 1968.

    Article  Google Scholar 

  46. Okada, T., H. Hayakawa, K. Tsuruda, A. Nishida, and A. Matsuoka, EXOS D observations of enhanced electric fields during the giant magnetic storm in March 1989, J. Geophys. Res., 98, 15417–15424, 1993.

    Article  Google Scholar 

  47. Oya, H., Studies on plasma and plasma waves in the plasmasphere and auroral particle acceleration region, by PWS on board the EXOS-D (Akebono) satellite, J. Geomag. Geoelectr., 43, Suppl., 369–393, 1991.

    Article  Google Scholar 

  48. Oya, H., Dynamical variation of plasmasphere revealed by PWS data onboard the Akebono (EXOS-D) satellite, J. Geomag. Geoelectr., 49, Suppl., 159–178, 1997.

    Article  Google Scholar 

  49. Oya, H., Effect of betatron drift on plasmasphere and plasmapause verified by the Akebono (EXOS-D) satellite observations, in Advances in Solar-Terrestrial Physics, edited by H. Oya, pp. 145–174, TERRAPUB, Tokyo, 2004.

    Google Scholar 

  50. Oya, H., A. Morioka, K. Kobayashi, M. Iizima, T. Ono, H. Miyaoka, T. Okada, and T. Obara, Plasma wave observation and sounder experiments (PWS) using the Akebono (EXOS-D) satellite—instrumentation and initial results including discovery of the high altitude equatorial plasma turbulence, J. Geomag. Geoelectr., 42, 411–422, 1990.

    Article  Google Scholar 

  51. Rowland, D. E. and J. R. Wygant, Dependence of the large-scale, inner magnetospheric electric field on geomagnetic activity, J. Geophys. Res., 103, 14959–14964, 1998.

    Article  Google Scholar 

  52. Shelley, E. G., R. D. Sharp, and R. G. Johnson, Satellite observations of an ionospheric acceleration mechanism, Geophys. Res. Lett., 3, 654–567, 1976.

    Article  Google Scholar 

  53. Shinbori, A., T. Ono, M. Iizima, A. Kumamoto, and H. Oya, Sudden commencements related plasma waves observed by the Akebono satellite in the polar region and inside the plasmasphere region, J. Geophys. Res., 108, 1457, doi:10.1029/2003JA009964, 2003.

    Article  Google Scholar 

  54. Shinbori, A., T. Ono, M. Iizima, and A. Kumamoto, SC related electric and magnetic field phenomena observed by the Akebono satellite inside the plasmasphere, Earth Planets Space, 56, 269–282, 2004a.

    Article  Google Scholar 

  55. Shinbori, A., T. Ono, M. Iizima, A. Kumamoto and Y. Nishimura, Enhancements of magnetospheric convection electric field associated with sudden commencements in the inner magnetosphere and plasmasphere regions, Adv. Space Res., 2004b (in press).

  56. Singh, N. and J. L. Horwitz, Plasmasphere refilling: recent observations and modeling, J. Geophys. Res., 97, 1049–1079, 1992.

    Article  Google Scholar 

  57. Sojka, J. J., C. E. Rasmussen, and R. W. Schunk, An interplanetary magnetic field dependent model of the ionospheric convection electric field, J. Geophys. Res., 91, 11281–11290, 1986.

    Article  Google Scholar 

  58. Southwood, D. J. and R. A. Wolf, An assessment of the role of precipitation in magnetospheric convection, J. Geophys. Res., 83, 5227–5232, 1978.

    Article  Google Scholar 

  59. Spiro, R. W., R. A. Heelis, and W. B. Hanson, Rapid subauroral ion drifts observed by Atmosphere Explore C, Geophys. Res. Lett., 8, 657–660, 1978.

    Google Scholar 

  60. Spiro, R. W., R. A. Heelis, and W. B. Hanson, Ion convection and the formation of the midlatitude F region ionization trough, J. Geophys. Res., 83, 4255–64, 1978.

    Article  Google Scholar 

  61. St.-Maurice, J.-P. and R.W. Schunk, Ion velocity distribution in the auroral ionosphere, Rev. Geophys. Space Phys., 17, 99–134, 1979.

    Article  Google Scholar 

  62. Stern, D. P., A study of the electric field in an open magnetospheric model, J. Geophys. Res., 78, 7292–7305, 1973.

    Article  Google Scholar 

  63. Stern, D. P., Large-scale electric field in the earth’s magnetosphere, Reviews of Geophys and Space Phys., 15, 156–194, 1977.

    Article  Google Scholar 

  64. Suvanto, K., M. Lockwood, and T. J. Fuller-Rowell, The influence of anisotropic F region ion velocity distributions on ionospheric ion outflows into the magnetosphere, J. Geophys. Res., 94, 1347–1358, 1989.

    Article  Google Scholar 

  65. Volland, H., A semiemperical model of large-scale magnetospheric electric fields, J. Geophys. Res., 78, 171–180, 1973.

    Article  Google Scholar 

  66. Waite, J. H., Jr., T. Nagai, J. F. E. Johnson, C. R. Chapell, J. L. Burch, T. L. Killeen, P. B. Hayyes, G. R. Carignan, W. K. Peterson, and E. G. Shelley, Escape of suprathermal O+ ions in the polar cap, J. Geophys. Res., 90, 1619–1630, 1985.

    Article  Google Scholar 

  67. Whitteker, J. H., The transient response of the topside ionosphere to precipitation, Planet. Space Sci., 25, 773–786, 1977.

    Article  Google Scholar 

  68. Wilson, G. R., W. J. Burke, N. C. Maynard, C. Y. Huang, and H. J. Singer, Global electrodynamics observed during the initial and main phase of the July 1991 magnetic storm, J. Geophys. Res., 106, 24517–24539, 2001.

    Article  Google Scholar 

  69. Wygant, J., F. Mozer, M. Temerin, J. Blake, N. Maynard, H. Singer, and M. Smiddy, Large amplitude electric field and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes, Geophys. Res. Lett., 21, 1739–1742, 1994.

    Article  Google Scholar 

  70. Wygant, J., D. Rowland, H. J. Singer, M. Temerin, F. Mozer, and M. K. Hudson, Experimental evidence on the role of the large spatial scale electric field in creating the ring current, J. Geophys. Res., 103, 29527–29544, 1998.

    Article  Google Scholar 

  71. Yau, A. W., E. G. Shelley, W. K. Peterson, and L. Lenchyshyn, Energetic auroral and polar ion outflow at DE-1 altitudes: Magnitude, composition, magnetic activity dependence, and long-term variations, J. Geophys. Res., 90, 8417–8432, 1985.

    Article  Google Scholar 

  72. Yeh, H.-C. and J. C. Foster, Storm time heavy ion outflow at mid-latitude, J. Geophys. Res., 95, 7881–7891, 1990.

    Article  Google Scholar 

  73. Yeh, H.-C., J. C. Foster, F. J. Rich, and W. Swider, Storm time electric field penetration observed at mid-latitude, J. Geophys. Res., 96, 5707–5721, 1991.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Shinbori.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shinbori, A., Nishimura, Y., Ono, T. et al. Electrodynamics in the duskside inner magnetosphere and plasmasphere during a super magnetic storm on March 13–15, 1989. Earth Planet Sp 57, 643–659 (2005). https://doi.org/10.1186/BF03351843

Download citation

Keywords

  • Total Electron Content
  • Magnetic Storm
  • Auroral Zone
  • Magnetic Local Time
  • Peak Magnitude