- Article
- Open Access
- Published:
Electrodynamics in the duskside inner magnetosphere and plasmasphere during a super magnetic storm on March 13–15, 1989
Earth, Planets and Space volume 57, pages 643–659 (2005)
Abstract
Variations of cold plasma density distribution and large-scale electric field in the inner magnetosphere and plasmasphere during a geomagnetic storm were investigated by using the observation data of the Akebono satellite which has been carried out for more than 15 yeas since March, 1989. We focus on the super geomagnetic storm on March 13–15, 1989, for which the maximum negative excursion of the Dst index was −589 nT. During the main phase of the magnetic storm, the strong convection electric field with a spatially inhomogeneous structure appears in the inner magnetosphere between L = 2.0 and 7.0. The averaged intensity of the electric field was in a range of about 2.5–9.2 mV/m. The spatial distribution in the magnetic equatorial region indicates that the magnitude within an L-value range of 2.2–7.0 is much larger than that observed at L = 7.0–10.0. Associated with the appearance of the strong convection electric field, the cold plasma density near the trough region around L = 3.0–6.0 was enhanced with one or two order magnitude, compared with that in the magnetically quiet condition. This implies that a mount of the ionospheric plasma may be supplied from the topside ionosphere into the trough and plasmasphere regions by the frictional heating due to the fast plasma convection in the ionosphere as pointed out by previous studies on the enhancements of plasma density in these regions, based on incoherent scatter radar and total electron content (TEC) observations (e.g., Yeh and Foster, 1990; Foster et al., 2004). During the recovery phase of the magnetic storm, the convection electric field observed in the inner magnetosphere and plasmasphere regions recovers within 3-4 days almost up to the level of the magnetically quiet condition.
References
Anderson, P. C., Subauroral ion drifts (SAID): Previous results and present studies, in Proceedings of the 1995 Cambridge Symposium/Workshop in Geoplasma Physics on “Multiscale Phenomena in Space Plasmas”, edited by T. Chang, and J. R. Jasperse, pp. 15, Mass. Inst. of Technol. Cent. for Space Res., Cambridge, 1996.
Anderson, P. C., W. B. Hanson, and R. A. Heelis, The ionospheric signatures of rapid subauroral ion drifts, J. Geophys. Res., 96, 5785–5792, 1991.
Anderson, P. C., W. B. Hanson, R. A. Heelis, J. D. Craven, D. N. Baker, and L. A. Frank, A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution, J. Geophys. Res., 98, 6069–6078, 1993.
Anderson, P. C., D. L. Carpenter, K. Tsuruda, T. Mukai, and F. J. Rich, Multisatellite observations of rapid subauroral ion drift (SAID), J. Geophys. Res., 106, 29585–29599, 2001.
Araki, T., A physical model of the geomagnetic sudden commencement, in Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, Geophys. Monogr. Ser., vol. 81, edited by M. J. Engebretson, K. Takahashi, and M. Scholer, pp. 183–200, AGU, Washington, D. C., 1994.
Axford, W. I., Magnetospheric convection, Rev. Geophys. Space Phys., 7, 421–459, 1969.
Axford, W. I. and C. O. Hines, A unifying theory of high-latitude geophysical phenomena and geomagnetic storms, Can. J. Phys., 39, 1433–1464, 1961.
Barakat, A. R. and R. W. Schunk, O+ ions in the polar wind, J. Geophys. Res., 88, 7887–7894, 1983.
Baumjohann, W. and G. Haerendel, Magnetospheric convection observed between 0600 and 2100 LT: Solar wind and IMF dependence, J. Geophys. Res., 90, 6370–6378, 1985.
Baumjouhann, W., G. Haerendel, and F. Melzner, Magnetospheric convection observed between 0600 and 2100 LT: Variations with Kp, J. Geophys. Res., 90, 393–398, 1985.
Blake, J. B., W. A. Kolasinski, R. W. Fillius, and E. G. Mullen, Injection of electrons and protons with energies of tens of MeV into L < 3 on March 24, 1991, Geophys. Res. Lett., 19, 821–824, 1992.
Brice, N. M., Bulk motion of the magnetosphere, J. Geophys. Res., 72, 5193–5211, 1967.
Burke, W. J., A. G. Rubin, N. C. Maynard, L. C. Gentile, P. J. Sultan, F. J. Rich, O. de La Beaujardiere, C. Y. Huang, and G. R. Wilson, Ionospheric disturbances observed by DMSP at middle to low latitudes during the magnetic storm of June 4–6, 1991, J. Geophys. Res., 105, 18391–18405, 2000.
Cahill, L. J., N. G. Waite, M. J. Engebretson, and M. Sugiura, Toroidal standing waves excited by a storm sudden commencement: DE1 observations, J. Geophys. Res., 95, 7857–7867, 1990.
Carpenter, D. L., Whistler studies of the plasmapause in the magnetosphere, I. Temporal variations in the position of the knee and some evidence on plasma motions near the knee, J. Geophys. Res., 71, 693–709, 1966.
Carpenter, D. L. and R. R. Anderson, An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97, 1097–1108, 1992.
Chappell, C. R., T. E. Moore, and J. H. Waite, Jr., The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere, J. Geophys. Res., 92, 5896–5910, 1987.
Clauer, C. R. and Y. Kamide, DP1 and DP2 current systems for the March 22, 1979, substorms, J. Geophys. Res., 90, 1343–1354, 1985.
Daglis, I. A., R. M. Thorne, W. Baumjohann, and S. Orsini, The terrestrial ring current: Origin, formation and decay, Rev. Geophys., 37, 407–438, 1999.
Dungey, J. W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47–48, 1961.
Dungey, J. W., The structure of the exosphere, or Adventures in velocity space, in Geophysics, The Earth’s Environment, edited by C. DeWitt, J. Hieblot, and A. Lebeau, pp. 526–537, Gordon and Breach New York, 1963.
Foster, J. C., A. J. Coster, P. J. Erickson, F. J. Rich, and B. R. Sandel, Stormtime observations of the flux of plasmaspheric ions to the dayside cusp/magnetopause, Geophys. Res. Lett., 31, L08809, doi:10.1029/2004GL020082, 2004.
Galperin, Yu. I., V. N. Ponomarev, Yu. N. Ponomarev, and A. G. Zosimova, Plasma convection in the evning sector of the magnetosphere and the nature of the plasmapause, Kosmicheskie Issledovanya, 18, 669–686, 1975.
Gombosi, T. I. and T. L. Killeen, Effects of thermospheric motions on the polar wind: A time-dependent numerical study, J. Geophys. Res., 92, 4725–4729, 1987.
Gombosi, T. I. and A. F. Nagy, Time-dependent modeling of field-aligned current-generated ion transients in the polar wind, J. Geophys. Res., 94, 359–369, 1989.
Goncharenko, L. P., J. E. Salah, J. C. Foster, and C. Huang, Variations in lower thermosphere dynamics at midlatitudes during intense geomagnetic storms, J. Geophys. Res., 109, A04304, doi:10.1029/2003JA010244, 2004.
Hayakawa, H., T. Okada, M. Ejiri, A. Kadokura, Y.-I. Kohno, K. Maezawa, S. Machida, A. Matsuoka, T. Mukai, M. Nakamura, A. Nishida, T. Obara, Y. Tanaka, F. S. Mozer, G. Haerendel, and K. Tsuruta, Electric field measurement on the Akebono (EXOS-D) satellite, J. Geomag. Geoelectr., 42, 371–385, 1990.
Heelis, R. A., R. A. Spiro, W. B. Hanson, and J. L. Burch, Magnetosphere ionosphere coupling in the mid-latitude trough, Eos Trans. AGU, 57, 990, 1976.
Iyemori, T. and D. R. K. Rao, Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm-substorm relation, Ann. Geophys., 14, 608–618, 1996.
Karlsson, T., G. T. Marklund, and L. G. Blomberg, Subauroral electric fields observed by the Freja satellite: A statistical study, J. Geophys. Res., 103, 4327–4341, 1998.
Kelly, M., The Earth’s Ionosphere, Academic, San Diego, Calif., 1989.
Knott, K., A. Pedersen, and U. Wedeken, GEOS 2 electric field observation during a sudden commencement and subsequent substorm, J. Geophys. Res., 90, 1283–1288, 1985.
Laakso, H. and R. Schmidt, Pc 4–5 pulsation in the electric field at geostationary orbit (GEOS2) triggered by sudden commencements, J. Geophys. Res., 94, 6626–6632, 1989.
Levy, R. H., H. E. Petschek, and G. I. Siscoe, Aerodynamics aspects of magnetospheric flow, AIAA J., 2, 2065–2076, 1964.
Li, X., I. Roth, M. Temerin, J. Wygant, M. K. Hudson, and J. B. Blake, Simulation of the prompt energization and transport of radiation particles during the March 24, 1991 SSC, Geophys. Res. Lett., 20, 2423–2426, 1993.
Lockwood, M., Thermal ion flows in the topside auroral ionosphere and the effects of low-altitude transverse acceleration, Planet. Space Sci., 30, 595–609, 1982.
Lockwood, M. and T. J. Fuller-Rowell, The modeled occurrence of nonthermal plasma in the ionospheric F region and the possible consequences for ion outflows into the magnetosphere, Geophys. Res. Lett., 14, 371–374, 1987.
Lockwood, M., J. H. Waite, Jr., T. E. Moore, J. F. E. Johnson, and C. R. Chappell, A new source of suprathermal O+ ions near the dayside polar cap boundary, J. Geophys. Res., 90, 4099–4116, 1985.
Maynard, N. C. and A. J. Chen, Isolated cold plasma regions: Observations and their relation to possible production mechanisms, J. Geophys. Res., 80, 1009–1013, 1975.
Maynard, N. C., T. L. Aggson, and J. P. Heppner, Magnetospheric observation of large sub-auroral electric fields, Geophys. Res. Lett., 7, 881–884, 1980.
Maynard, N. C., T. L. Aggson, and J. P. Heppner, The plasmaspheric electric field as measured by ISEE 1, J. Geophys. Res., 88, 3981–3990, 1983.
Mozer, F. S., Electric field mapping in the ionosphere at the equatorial plane, Planet Space Sci., 18, 259–263, 1970.
Ness, N. F., The earth’s magnetic tail, J. Geophys. Res., 70, 2989–3005, 1965.
Nishida, A., Formation of plasmapause, or magnetospheric plasma knee by combined action of magnetospheric convection and plasma escape from the tail, J. Geophys. Res., 71, 5669–5679, 1966.
Nishida, A., Coherence of geomagnetic DP-2 fluctuations with interplanetary magnetic variations, J. Geophys. Res., 73, 5549–5559, 1968.
Okada, T., H. Hayakawa, K. Tsuruda, A. Nishida, and A. Matsuoka, EXOS D observations of enhanced electric fields during the giant magnetic storm in March 1989, J. Geophys. Res., 98, 15417–15424, 1993.
Oya, H., Studies on plasma and plasma waves in the plasmasphere and auroral particle acceleration region, by PWS on board the EXOS-D (Akebono) satellite, J. Geomag. Geoelectr., 43, Suppl., 369–393, 1991.
Oya, H., Dynamical variation of plasmasphere revealed by PWS data onboard the Akebono (EXOS-D) satellite, J. Geomag. Geoelectr., 49, Suppl., 159–178, 1997.
Oya, H., Effect of betatron drift on plasmasphere and plasmapause verified by the Akebono (EXOS-D) satellite observations, in Advances in Solar-Terrestrial Physics, edited by H. Oya, pp. 145–174, TERRAPUB, Tokyo, 2004.
Oya, H., A. Morioka, K. Kobayashi, M. Iizima, T. Ono, H. Miyaoka, T. Okada, and T. Obara, Plasma wave observation and sounder experiments (PWS) using the Akebono (EXOS-D) satellite—instrumentation and initial results including discovery of the high altitude equatorial plasma turbulence, J. Geomag. Geoelectr., 42, 411–422, 1990.
Rowland, D. E. and J. R. Wygant, Dependence of the large-scale, inner magnetospheric electric field on geomagnetic activity, J. Geophys. Res., 103, 14959–14964, 1998.
Shelley, E. G., R. D. Sharp, and R. G. Johnson, Satellite observations of an ionospheric acceleration mechanism, Geophys. Res. Lett., 3, 654–567, 1976.
Shinbori, A., T. Ono, M. Iizima, A. Kumamoto, and H. Oya, Sudden commencements related plasma waves observed by the Akebono satellite in the polar region and inside the plasmasphere region, J. Geophys. Res., 108, 1457, doi:10.1029/2003JA009964, 2003.
Shinbori, A., T. Ono, M. Iizima, and A. Kumamoto, SC related electric and magnetic field phenomena observed by the Akebono satellite inside the plasmasphere, Earth Planets Space, 56, 269–282, 2004a.
Shinbori, A., T. Ono, M. Iizima, A. Kumamoto and Y. Nishimura, Enhancements of magnetospheric convection electric field associated with sudden commencements in the inner magnetosphere and plasmasphere regions, Adv. Space Res., 2004b (in press).
Singh, N. and J. L. Horwitz, Plasmasphere refilling: recent observations and modeling, J. Geophys. Res., 97, 1049–1079, 1992.
Sojka, J. J., C. E. Rasmussen, and R. W. Schunk, An interplanetary magnetic field dependent model of the ionospheric convection electric field, J. Geophys. Res., 91, 11281–11290, 1986.
Southwood, D. J. and R. A. Wolf, An assessment of the role of precipitation in magnetospheric convection, J. Geophys. Res., 83, 5227–5232, 1978.
Spiro, R. W., R. A. Heelis, and W. B. Hanson, Rapid subauroral ion drifts observed by Atmosphere Explore C, Geophys. Res. Lett., 8, 657–660, 1978.
Spiro, R. W., R. A. Heelis, and W. B. Hanson, Ion convection and the formation of the midlatitude F region ionization trough, J. Geophys. Res., 83, 4255–64, 1978.
St.-Maurice, J.-P. and R.W. Schunk, Ion velocity distribution in the auroral ionosphere, Rev. Geophys. Space Phys., 17, 99–134, 1979.
Stern, D. P., A study of the electric field in an open magnetospheric model, J. Geophys. Res., 78, 7292–7305, 1973.
Stern, D. P., Large-scale electric field in the earth’s magnetosphere, Reviews of Geophys and Space Phys., 15, 156–194, 1977.
Suvanto, K., M. Lockwood, and T. J. Fuller-Rowell, The influence of anisotropic F region ion velocity distributions on ionospheric ion outflows into the magnetosphere, J. Geophys. Res., 94, 1347–1358, 1989.
Volland, H., A semiemperical model of large-scale magnetospheric electric fields, J. Geophys. Res., 78, 171–180, 1973.
Waite, J. H., Jr., T. Nagai, J. F. E. Johnson, C. R. Chapell, J. L. Burch, T. L. Killeen, P. B. Hayyes, G. R. Carignan, W. K. Peterson, and E. G. Shelley, Escape of suprathermal O+ ions in the polar cap, J. Geophys. Res., 90, 1619–1630, 1985.
Whitteker, J. H., The transient response of the topside ionosphere to precipitation, Planet. Space Sci., 25, 773–786, 1977.
Wilson, G. R., W. J. Burke, N. C. Maynard, C. Y. Huang, and H. J. Singer, Global electrodynamics observed during the initial and main phase of the July 1991 magnetic storm, J. Geophys. Res., 106, 24517–24539, 2001.
Wygant, J., F. Mozer, M. Temerin, J. Blake, N. Maynard, H. Singer, and M. Smiddy, Large amplitude electric field and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes, Geophys. Res. Lett., 21, 1739–1742, 1994.
Wygant, J., D. Rowland, H. J. Singer, M. Temerin, F. Mozer, and M. K. Hudson, Experimental evidence on the role of the large spatial scale electric field in creating the ring current, J. Geophys. Res., 103, 29527–29544, 1998.
Yau, A. W., E. G. Shelley, W. K. Peterson, and L. Lenchyshyn, Energetic auroral and polar ion outflow at DE-1 altitudes: Magnitude, composition, magnetic activity dependence, and long-term variations, J. Geophys. Res., 90, 8417–8432, 1985.
Yeh, H.-C. and J. C. Foster, Storm time heavy ion outflow at mid-latitude, J. Geophys. Res., 95, 7881–7891, 1990.
Yeh, H.-C., J. C. Foster, F. J. Rich, and W. Swider, Storm time electric field penetration observed at mid-latitude, J. Geophys. Res., 96, 5707–5721, 1991.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Shinbori, A., Nishimura, Y., Ono, T. et al. Electrodynamics in the duskside inner magnetosphere and plasmasphere during a super magnetic storm on March 13–15, 1989. Earth Planet Sp 57, 643–659 (2005). https://doi.org/10.1186/BF03351843
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1186/BF03351843
Keywords
- Total Electron Content
- Magnetic Storm
- Auroral Zone
- Magnetic Local Time
- Peak Magnitude