Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

1-D resistivity structures of the oceanic crust around the hydrothermal circulation system in the central Mariana Trough using Magnetometric Resistivity method

Abstract

We present preliminary results of an electromagnetic survey over a region of hydrothermal circulation in the spreading axis of the central Mariana Trough. The Magnetometric Resistivity (MMR) method is used to determine the electrical resistivity structure of the oceanic crust around the hydrothermal system. 1-D electrical resistivity structure is calculated from the relation between the amplitude of magnetic field and source-receiver separation. The amplitudes of magnetic field variation of ocean bottom magnetometers (OBMs) placed on axis are larger than those of OBMs about 700 m away from the spreading axis, for source-receiver separations larger than 400 m. We estimated two resistivity structure models: one for the axial OBMs, and another for the off-axis OBMs. A region of lower resistivity between depths of 100–300 m is identified in the on-axis model. The hydrothermal source of the Alice Springs Field probably exists beneath the spreading axis, and the size of this source is smaller than 700 m. Lower resistivities at a depth of 50 m are identified in both the on-axis and the off-axis models, suggesting that the porosity in the uppermost oceanic crust is largest at this depth.

References

  1. Archie, G. E., The electrical resistivity log as an aid in determining some reservoir characteristics, J. Pet. Technol., 5, 1–8, 1942.

  2. Becker, K., Large-scale electrical resistivity and bulk porosity of the oceanic crust, DSDP hole 504B, Cost-Rica rift, Initial rep. of Deep Sea Drill. Proj., 83, 419–427, 1985.

  3. Constable, S. C., R. L. Parker, and C. G. Constable, Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data, Geophysics, 52, 289–300, 1987.

  4. Craig, H., Y. Horibe, K. A. Farley, J. A. Welhan, K. R. Kim, and R. N. Hey, Hydrothermal vents in the Mariana Trough: Results of the first Alvin dives, EOS, Trans. Am. Geophys. Un., 68, 1531, 1987.

  5. Edwards, R. N., L. K. Law, and J. M. DeLaurier, On measuring the electrical conductivity of the oceanic crust by a modified magnetometric resistivity method, J. Geophys. Res., 86, 11,609–11,615, 1981.

  6. Evans, R. L., Constraints on the large-scale porosity and permeability structure of young oceanic crust from velocity and resistivity data, Geophys. J. Int., 119, 869–879, 1994.

  7. Evans, R. L., S. C. Webb, M. Jegen, and K. Sananikone, Hydrothermal circulation at the Cleft-Vance overlapping spreading center: Results of a magnetometric resistivity survey, J. Geophys. Res., 103, 12,321–12,338, 1998.

  8. Evans, R. L., S. C. Webb, and the RIFT-UMC Team, Crustal resistivity structure at 9°50′N on the East Pacific Rise: Results of an electromagnetic survey, Geophys. Res. Lett., 29, doi:10.1029/2001GL014106, 2002.

  9. Fisher, A. T., Permeability within basaltic oceanic crust, Reviews of Geophysics, 36, 143–182, 1998.

  10. Fujikura, K., T. Yamazaki, K. Hasegawa, U. Tsunogai, R. J. Stern, H. Ueno, H. Yamamoto, Y. Maki, S. Tsuchida, T. Kodera, H. Yamamoto, C. H. Sun, and T. Okutani, Biology and earth scientific investigation by the submersible “Shinkai 6500” system of deep-sea hydrothermal and lithosphere in the Mariana back-arc basin, JAMSTEC J. Deep Sea Res., 13, 1–20, 1997 (in Japanese with English abstract).

  11. Gamo, T., H. Chiba, P. Fryer, J. Ishibashi, T. Ishii, L. E. Johnson, K. Kelly, H. Masuda, S. Ohta, A. L. Reysenbach, P. A. Rona, T. Shibata, J. Tamaoka, H. Tanaka, U. Tsunogai, T. Yamaguchi, and K. Fujioka, Mariana 1992 diving surveys by “Shinkai 6500” (Y9204 cruise): Revisits to the Mid-Mariana hydrothermal area and discovery of hydrothermal vents in the southern Mariana region, JAMSTEC J. Deep Sea Res., 10, 153–162, 1994 (in Japanese with English abstract).

  12. Nesbitt, B. E., Electrical resistivities of crustal fluids, J. Geophys. Res., 98, 4301–4310, 1993.

  13. Nobes, D. C., L. K. Law, and R. N. Edwards, The determination of resistivity and porosity of the sediment and fractured basalt layers near the Juan de Fuca Ridge, Geophys. J. R. astr. Soc., 86, 289–317, 1986.

  14. Nobes, D. C., L. K. Law, and R. N. Edwards, Results of a sea-floor electromagnetic survey over a sedimented hydrothermal area on the Juan de Fuca Ridge, Geophys. J. Int., 110, 333–346, 1992.

  15. Seama, N. and S. Matsubayashi, Recent progress in technology for marine geophysical research, Jour. Japan Soc. Mar. Surv. Tech., 15, 71–87, 2003 (in Japanese).

  16. Seama, N., T. Goto, Y. Nogi, M. Ichiki, T. Kasaya, N. Tada, H. Iwamoto, K. Kitada, T. Matsuno, S. Yoshida, Y. Kawada, M. Ito, R. Ishii, K. Takizawa, K. Suyehiro, H. Utada, and M. Shimoizumi, Preliminary Report of KR02-14 Kairei cruise, JAMSTEC J. Deep Sea Res., 22, 89–106, 2003.

  17. Wessel, P. and W. H. Smith, New, improved version of the Generic Mapping Tools released, EOS Trans. Am. Geophys. Un., 79, 579, 1998.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Noriko Tada.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tada, N., Seama, N., Goto, T. et al. 1-D resistivity structures of the oceanic crust around the hydrothermal circulation system in the central Mariana Trough using Magnetometric Resistivity method. Earth Planet Sp 57, 673–677 (2005). https://doi.org/10.1186/BF03351846

Download citation

Key words

  • Hydrothermal circulation system
  • resistivity structure
  • MMR method
  • the central Mariana Trough