Skip to main content

Crustal analysis of maud rise from combined satellite and near-surface magnetic survey data

Abstract

We produced a crustal magnetization model for the Maud Rise in the southwest Indian Ocean off the coast of East Antarctica using magnetic observations from the Ørsted satellite and near-surface surveys complied by the Antarctic Digital Magnetic Anomaly Project (ADMAP). Joint inversion of the two anomaly fields suggests that the magnetic effects due to crustal thickness variations and remanence involving the normal polarity Cretaceous Quiet Zone (KQZ) dominate at satellite altitude (~700 km). The crustal thickness effects were modeled in the Ørsted data using crustal thickness variations derived from satellite altitude gravity data. Modeling of the residual Ørsted and near-surface magnetic anomalies supports extending the KQZ eastwards to the Astrid Ridge. The remaining near-surface anomalies involve crustal features with relatively high frequency effects that are strongly attenuated at satellite altitudes. The crustal modeling can be extended by the satellite magnetic anomalies across the Indian Ocean Ridge for insight on the crustal properties of the conjugate Agulhas Plateau. The modeling supports the Jurassic reconstruction of Gondwana when the African Limpopo-Zambezi and East Antarctic Princess Astrid coasts were connected as part of a relatively demagnetized crustal block.

References

  1. Alsdorf, D. E., R. R. B von Frese, J. Arkani-Hamed, and H. C. Noltimier, Separation of lithospheric, external, and core components of the south polar geomagnetic field at satellite altitudes, J. Geophys. Res., 99, 4655–4667, 1994.

    Article  Google Scholar 

  2. Antoine, L. A. G. and A. B. Moyes, The Agulhas Magsat anomaly: implications for continental break-tip of Gondwana, Tectonophysics, 212, 33–44, 1992.

    Article  Google Scholar 

  3. Arkani-Hamed, J., Remanent magnetization of the oceanic upper mantle, Geophys. Res. Lett., 15, 48–51, 1988.

    Article  Google Scholar 

  4. Arkani-Hamed, J. and D. W. Strangway, Intermediate scale magnetic anomalies of the Earth, Geophysics, 50, 2817–30, 1985.

    Article  Google Scholar 

  5. Arkani-Hamed, J., R. A. Langel, and M. Purucker, Magnetic anomaly maps of Earth derived from POGO and Magsat data, J. Geophys. Res., 99, 24,075–24,090, 1994.

    Article  Google Scholar 

  6. Bormann, P., P. Bankwitz, E. Bankwitz, V. Damm, E. Hurtig, H. Kompf, M. Menning, H.-J. Paech, U. Schofer, and W. Stackegrandt, Structure and development of the passive continental margin across the Princess Astrid coast, East Antarctica, J. Geodyn., 6, 347–373, 1986.

    Article  Google Scholar 

  7. Bradley, L. M. and H. Frey, Constraints on the crustal nature and tectonic history of the Kerguelen Plateau from comparative magnetic modeling using Magsat data, Tectonophysics, 145, 243–251, 1988.

    Article  Google Scholar 

  8. Cain, J. C., D. R. Schmitz, and L. Muth, Small-scale features in the Earth’s magnetic field observed by Magsat, J. Geophys. Res., 89, 1070–1076, 1984.

    Article  Google Scholar 

  9. Clark, D. A. and D. W. Emerson, Notes on rock magnetization characteristics in applied geophysical studies, Exploration Geophysics, 22, 547–555, 1991.

    Article  Google Scholar 

  10. Corner, B., Geological evolution of western Dronning Maud Land within a Gondwana framework: geophysics subprogramme, Final Project Rept. SACAR, 1994.

    Google Scholar 

  11. Counil, J.-L., Y. Cohen, and J. Achache, A global continent-ocean magnetization contrast: spherical harmonic analysis, Earth Planet. Sci. Lett., 103, 354–64, 1991.

    Article  Google Scholar 

  12. Dyment, J. and J. Arkani-Hamed, Contribution of lithospheric remanent magnetization to satellite magnetic anomalies over the world’s oceans, J. Geophys. Res., 103, 15423–15441, 1998.

    Article  Google Scholar 

  13. Frey, H., Magsat scalar anomaly distribution: the global perspective, Geophys. Res. Lett., 9, 277–280, 1982.

    Article  Google Scholar 

  14. Frey, H., Magsat and POGO anomalies over the Lord Howe Rise: Evidence against a simple continental crustal structure, J. Geophys. Res., 90, 2631–2639, 1985.

    Article  Google Scholar 

  15. Fullerton, L. G., H. V. Frey, J. H. Roark, and H. H. Thomas, Contributions of Cretaceous Quiet Zone natural remanent magnetization to Magsat anomalies in the Southwest Indian Ocean, J. Geophys. Res., 99, 11923–36, 1994.

    Article  Google Scholar 

  16. Ghidella, M., C. Raymond, and J. LaBrecque, Verification of crustal sources for satellite elevation magnetic anomalies in West Antarctica and the Weddell Sea and their regional tectonic implications, in Geological Evolution of Antarctica, edited by M. Thomson, J. Crame, and J. Thomson, pp. 243–250, Cambridge University Press, 1991.

    Google Scholar 

  17. Ghods, A. Negative magnetic anomalies at satellite altitude over passive marginal basins, Master’s thesis, McGill University, 1994.

    Google Scholar 

  18. Gohl, K. and G. Uenzelmann-Neben, The crustal role of the Agulhas Plateau, southwest Indian Ocean: evidence from seismic profiling, Geophys. J. Int., 144, 632–646, 2001.

    Article  Google Scholar 

  19. Golynsky, A. V., G. E. Grikurov, and E. N. Kamenev, Geological significance of regional magnetic anomalies in Coats Land and western Dronning Maud Land, Polarforshung, 67, 91–99, 2000.

    Google Scholar 

  20. Golynsky, A. V., M. Chiappini, D. Damaske, C. Finn, F. Ferraccioli, J. Ferris, M. Ghidella, T. Ishihara, A. Johnson, H. R. Kim, L. Kovacs, J. LaBrecque, V. Masolov, Y. Nogi, M. Purucker, P. Taylor, and M. Torta, ADMAP—A digital magnetic anomaly map of the Antarctic. 1:10,000 scale map. edited by P. Morris and R. von Frese, BAS (Misc.) 10, Cambridge, British Antarctic Survey, 2001.

  21. Harland, W. B., R. L. Armstrong, A. N. Cox, L. E. Craig, A. G. Smith, and D. G. Smith, A Geologic Time Scale, New York: Cambridge Univ. Press, 1989.

    Google Scholar 

  22. Harrison, C. G. A., H. M. Carle, and K. L. Hayling, Interpretation of satellite elevation magnetic anomalies, J. Geophys. Res., 91, 3633–3650, 1986.

    Article  Google Scholar 

  23. Hayling, K. L., Magnetic anomalies at satellite altitude over continentocean boundaries, Tectonophysics, 192, 129–143, 1991.

    Article  Google Scholar 

  24. Hinz, K. and W. Krause, The continental margin of Queen Maud Land, Antarctica: Seismic sequences, structural elements and geological development, Geol. Jahrbuch, E23, 17–41, 1982.

    Google Scholar 

  25. Hinze, W. J. and J. Zietz, The composite magnetic anomaly map of the conterminous United States, in The Utility of Regional Gravity and Magnetic Anomaly Maps, edited by W. J. Hinze, pp. 1–24, Tulsa: Society of Exploration Geophysicists, 1985.

    Google Scholar 

  26. Hinze, W. J., R. R. B. von Frese, and D. N. Ravat, Mean magnetic contrasts between oceans and continents, Tectonophysics, 192, 117–127, 1991.

    Article  Google Scholar 

  27. Ishihara, T., G. L. Leitchenkov, A. V. Golynsky, S. Alyavdin, and P. E. O’Brien, Compilation of shipborne magnetic and gravity data images crustal structure of Prydz Bay (East Antarctica), Ann. di. Geofisica, 44, 229–248, 1991.

    Google Scholar 

  28. Jacobs, J., C. M. Fanning, F. Henjes-Kunst, M. Olesch, and H.-J. Paech, Continuation of the Mozambique Belt into East Antarctica: Grenville-Age metamorphism and polyphase Pan-African high-grade events in central Dronning Maud Land, J. of Geology, 106, 385–406, 1998.

    Article  Google Scholar 

  29. Kim, H. R., Antarctic lithospheric anomalies from Ørsted satellite and near-surface magnetic observations, Ph.D. Thesis, The Ohio State University, Columbus, 2002.

    Google Scholar 

  30. Kim, H. R., R. R. B. von Frese, J.W. Kim, P. T. Taylor, M. E. Purucker, and T. Neubert, Ørsted verifies regional magnetic anomalies of the Antarctic lithosphere, Geophys. Res. Lett., 29, ORS 3–1 to 3–3, 2002.

    Google Scholar 

  31. Kim, H. R., R. R. B. von Frese, A. V. Golynsky, P. T. Taylor, and J. W. Kim, Application of satellite magnetic observations for estimating nearsurface magnetic anomalies, Earth Planets Space, 52, 955–966, 2004.

    Article  Google Scholar 

  32. LaBrecque, J. L. and M. Keller, A geophysical study of the Indo-Atlantic Basin, in Antarctic Sciences, edited by C. Craddock, Univ. of Wisconsin Press, 331–337, 1982.

    Google Scholar 

  33. LaBrecque, J. L. and C. A. Raymond, Sea spreading anomalies in the Magsat field of the North Atlantic, J. Geophys. Res., 90, 2549–2564, 1985.

    Article  Google Scholar 

  34. Langel, R. A. and W. J. Hinze, The Magnetic Field of the Earth’s Lithosphere: The Satellite Perspective, 429 pp., Cambridge Univ. Press, New York, 1998.

    Google Scholar 

  35. Leitchenkov, G. L., H. Miller, and E. N. Zatzepin, Structure and Mesozoic evolution of the eastern Weddell Sea, Antarctica: History of early Gondwana break-up, in Weddell Sea Tectonics and Gondwana Breakup, edited by B. C. Storey, E. C. King, and R. A. Rivermore, Volume 108, pp. 175–190, London: Geological Society, 1996.

    Google Scholar 

  36. Levi, S. and R. Riddihough, Why are marine magnetic anomalies suppressed over sedimented spreading centers?, Geology, 14, 651–654, 1986.

    Article  Google Scholar 

  37. Marks, K. M. and A. A. Tikku, Cretaceous reconstructions of East Antarctica, Africa and Madagascar, Earth. Planet. Sci. Lett., 186, 479–495, 2001.

    Article  Google Scholar 

  38. Martin, A. K. and C. J. H. Hartnady, Plate tectonic development of the South West Indian Ocean: A revised reconstruction of East Antarctica and Africa, J. Geophys. Res., 91, 4767–4786, 1986.

    Article  Google Scholar 

  39. Meyer, J., J. H. Hufer, M. Siebert, and A. Hahn, On the identification of Magsat anomaly charts as crustal part of internal field, J. Geophys. Res., 90, 2537–2542, 1985.

    Article  Google Scholar 

  40. Mueller, R. D., W. R. Roest, J. Y. Royer, L. M. Gahagan, and J. G. Sclater, Digital isochrons of the world’s ocean floor, J. Geophys. Res., 102(B2), 3211–3214, 1997.

    Article  Google Scholar 

  41. Neubert, T., M. Mandea, G. Hulot, R. von Frese, F. Primdahl, J. L. JØrgensen, E. Friis-Christensen, P. Stauning, N. Olsen, and T. Risbo, Ørsted satellite captures high-precision geomagnetic field data, EOS (Am. Geophys. Union Trans.), 82, 81 and 86–88, 2001.

    Article  Google Scholar 

  42. Olsen, N., T. Sabaka, and L. T. Clausen, Determination of the IGRF 2000, Earth Planets Space, 52, 1175–1182, 2000.

    Article  Google Scholar 

  43. Pilkington, M. and A. R. Hildebrand, Three-dimensional magnetic imaging of the Chicxulub Crater, J. Geophys. Res., 105, 23,479–23,491, 2000.

    Article  Google Scholar 

  44. Purucker, M. E., R. A. Langel, M. Rajaram, and C. Raymond, Global magnetization models with a priori information, J. Geophys. Res., 103, 2563–2584, 1998.

    Article  Google Scholar 

  45. Purucker, M. E., R. R. B. von Frese, and P. T. Taylor, Mapping and interpretation of satellite magnetic anomalies from POGO data over the Antarctic region, Ann. di. Geofisica, 42, 215–228, 1999.

    Google Scholar 

  46. Ravat, D., W. J. Hinze, and R. R. B. von Frese, Analysis of Magsat magnetic contrasts across Africa and South America, in Lithospheric Analysis of Magnetic and Related Geophysical Anomalies, edited by R. R. B. von Frese and P. T. Taylor, pp. 59–76, 1992.

    Google Scholar 

  47. Ravat, D. N., M. Pilkington, M. Purucker, T. Sabaka, P. T. Taylor, R. R. B. von Frese, and K. A. Whaler, Recent advances in the verication and geologic intgerpretation of satellite-altitude magnetic anomalies. 68th Annual Meeting, Society of Exploration Geophysicists, Expanded Abstracts, pp. 507–510, 1998.

    Google Scholar 

  48. Ravat, D. N., K. A. Whaler, M. Pilkington, T. J. Sabaka, and M. Purucker, Compatibility of high-altitude aeromagnetic and satellite-altitude magnetic anomalies over Canada, Geophysics, 67, 546–554, 2002.

    Article  Google Scholar 

  49. Roeser, H. A., J. Fritsch, and K. Hinz, The development of the crust of Dronning Maud Land, East Antarctica, in Weddell Sea Tectonics and Gondwana Break-up, edited by B. C. Storey, E. C. King, and R. A. Rivermore, Volume 108, London: Geological Society, 1996.

  50. Schandl, E. S., M. P. Gorton, and F. J. Wicks., Mineralogy and geochemistry of alkali basalts from Maud Rise, Weddell Sea, Antarctica, Proceedings of the Ocean Drilling Program, Scientific Results, Part B (113), pp. 5–13, edited by Barker, P. and J. P. Kennett, 1990.

    Google Scholar 

  51. Smith, G. M., The magnetic structure of the marine basement, Rev. Aquat. Sci., 2, 205–227, 1990.

    Google Scholar 

  52. Taylor, P. T. and J. Y. Frawley, Magsat anomaly data over the Kursk region, U.S.S.R., Phys. Earth Planet. Int., 45, 255–265, 1987.

    Article  Google Scholar 

  53. Thomas, H. H., A model of ocean basin crustal magnetization appropriate for satellite elevation anomalies, J. Geophys. Res., 92, 11609–11613, 1987.

    Article  Google Scholar 

  54. Toft, P. B. and J. Arkani-Hamed, Magnetization of the Pacific Ocean lithosphere deduced from Magsat data, J. Geophys. Res., 97, 4387–4406, 1992.

    Article  Google Scholar 

  55. Toft, P. B. and J. Arkani-Hamed, Induced magnetization of the oceanic lithosphere and ocean-continent magnetization contrast inferred from Magsat anomalies, J. Geophys. Res., 98, 6267–82, 1993.

    Article  Google Scholar 

  56. Tucholke, B. E., R. E. Houtz, and D. M. Barrett, Continental crust beneath the Agulhas Palteau, southwest Indian Ocean, J. Geophys. Res., 86, 3791–3804, 1981.

    Article  Google Scholar 

  57. von Frese, R. R. B., Correction to: von Frese, R. R. B. and W. J. Hinze and L.W. Braile, “Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion” [Earth. Planet. Sci. Lett., 53, 69–83, 1981] Earth. Planet. Sci. Lett., 163, 409–411, 1998.

    Article  Google Scholar 

  58. von Frese, R. R. B., W. J. Hinze, and L. W. Braile, Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion, Earth Planet. Sci. Lett., 53, 69–83, 1981a.

    Article  Google Scholar 

  59. von Frese, R. R. B., W. J. Hinze, L. W. Braile, and A. J. Luca, Spherical- Earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration, J. Geophys., 49, 234–242, 1981b.

    Google Scholar 

  60. von Frese, R. R. B., W. J. Hinze, R. Olivier, and C. R. Bentley, Regional magnetic anomaly constraints on continental breakup, Geology, 14, 68–71, 1986.

    Article  Google Scholar 

  61. von Frese, R. R. B., D. N. Ravat, W. J. Hinze, and C. A. McGue, Improved inversion of geopotential field anomalies for lithospheric investigations, Geophysics, 53, 375–385, 1988.

    Article  Google Scholar 

  62. von Frese, R. R. B., L. Tan, J.W. Kim, and C. R. Bentley, Antarctic crustal modeling from the spectral correlation of free-air gravity anomalies with the terrain, J. Geophys. Res., 104, 25275–25297, 1999a.

    Article  Google Scholar 

  63. von Frese, R. R. B., H. R. Kim, L. Tan, J. W. Kim, P. T. Taylor, M. E. Purucker, D. E. Alsdorf, and A. J. Anderson, Satellite magnetic anomalies of the Antarctic crust, Ann. di Geofisica, 42, 293–307, 1999b.

    Google Scholar 

  64. von Frese, R. R. B., H. R. Kim, P. T. Taylor, and J. W. Kim, CHAMP, Ørsted, and Magsat magnetic anomalies of the Antarctic lithosphere, in First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, edited by C. Reigber, H. Lühr, and P. Schwintzer, pp. 309–314, Springer Verlag, Berlin, 2003.

    Google Scholar 

  65. von Frese, R. R. B., H. R. Kim, P. T. Taylor, and M. F. Asgharzadeh, Reliability of CHAMP anomaly continuations, in Earth Observation with CHAMP Results from Three Years in Orbit, edited by C. Reigber, H. Luhr, P. Schwintzer, and J. Wickert, pp. 287–292, Springer Verlag, Berlin, 2004.

  66. Wasilewski, P. J. and M. A. Mayhew, The Moho as a magnetic boundary revisited, Geophys. Res. Lett., 19, 2259–2262, 1992.

    Article  Google Scholar 

  67. Wasilewski, P. J., H. H. Thomas, and M. A. Mayhew, The Moho as a magnetic boundary, Geophys. Res. Lett., 6, 541–544, 1979.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyung Rae Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H.R., von Frese, R.R.B., Golynsky, A.V. et al. Crustal analysis of maud rise from combined satellite and near-surface magnetic survey data. Earth Planet Sp 57, 717–726 (2005). https://doi.org/10.1186/BF03351851

Download citation

Key words

  • Maud Rise
  • Magnetic anomaly
  • Antarctic geology
  • Aeromagnetic data
  • Orsted
  • tectonic reconstructions