Skip to main content

Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques

Abtract

Crustal deformation on land can now be measured and monitored routinely and precisely using space geodetic techniques. The same is not true of the seafloor, which covers about 70 percent of the earth surface, and is critical in terms of plate tectonics, submarine volcanism, and earthquake mechanisms of plate boundary types. We develop new data processing strategies for quantifying crustal deformation at the ocean floor: single- and double-difference methods. Theoretically, the single difference method can eliminate systematic errors of long period, while the double difference method is able to almost completely eliminate all depth-dependent and spatialdependent systematic errors. The simulations have shown that the transponders on the seafloor and thus the deformation of the seafloor can be determined with the accuracy of one centimeter in the single point positioning mode. Since almost all systematic errors (of temporal or spatial nature) have been removed by the double difference operator, the double difference method has been simulated to be capable of determining the threedimensional, relative position between two transponders on the seafloor even at the accuracy of sub-centimeters by employing and accumulating small changes in geometry over time. While the surveying strategy employed by the Scripps Institution of Oceanography (SIO) requires the ship maintain station, our technique requires the ship to move freely. The SIO approach requires a seafloor array of at least three transponders and that the relative positions of the transponders be pre-determined. Our approach directly positions a single transponder or relative positions of transponders, and thus measures deformation unambiguously.

References

  • Anderson, G., S. Constable, H. Staudigel, and F. Wyatt, A seafloor longbaseline tiltmeter, J. Geophys. Res., B102, 20269–20285, 1997.

    Article  Google Scholar 

  • Ando, M., Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, Japan, Tectonophys., 27, 119–140, 1975.

    Article  Google Scholar 

  • Asada, A. and T. Yabuki, Centimeter-level positioning on the seafloor, Proc. Japan Acad. Ser. B, 77, 7–12, 2001.

    Article  Google Scholar 

  • Chadwell, D., Shipboard towers for Global Positioning System antennas, Ocean Eng., 30, 1467–1487, 2003.

    Article  Google Scholar 

  • Chadwell, D., F. Spiess, J. Hildebrand, L. Young, G. Purcell, Jr., and H. Dragert, Deep-sea geodesy: Monitoring the ocean floor, GPS World, 9, 44–55, 1998.

    Google Scholar 

  • Cohen, C. E., Attitude determination, in Global Positioning System: Theory and Applications, Vol. II, edited by B. W. Parkinson, J. J. Spilker, Jr., P. Axelrad and P. Enge, pp. 519–538, Amer. Inst. Aeronautics & Astronautics, Washington, 1996.

    Google Scholar 

  • Colosi, J. A., S. M. Flatté, and C. Bracher, Internal-wave effects on 1000-km oceanic acoustic pulse propagation: Simulation and comparison with experiment, J. Acoust. Soc. Am., 96, 452–468, 1994.

    Article  Google Scholar 

  • Desaubies, Y., Ocean acoustic tomography, in Oceanographic and Geophysical Tomography, edited by Y. Desaubies, A. Tarantola, and J. Zinn-Justin, pp. 159–202, Elsevier, Amsterdam, 1990.

    Google Scholar 

  • Flatté, S. M. and M. D. Vera, Internal-wave time evolution effect on ocean acoustic rays, J. Acoust. Soc. Am., 112, 1359–1365, 2002.

    Article  Google Scholar 

  • Flatté, S. M., R. Dashen, W. H. Munk, K. M. Watson, and F. Zachariasen, Sound Transmission trough a Fluctuating Ocean, Cambridge University Press, Cambridge, 1979.

    Google Scholar 

  • Frank, F. C., Deduction of earth strains from survey data, Bull. Seismol. Soc. Am., 56, 35–42, 1966.

    Google Scholar 

  • Fujimoto, H., T. Kanazawa, and H. Murakami, Experiment on precise seafloor acoustic ranging—A promising result of observation, J. Seismol. Soc. Japan, 48, 289–292, 1995 (in Japanese).

    Google Scholar 

  • Fujimoto, H., K. Koizumi, Y. Osada, and T. Kanazawa, Development of instruments for seafloor geodesy, Earth Planets Space, 50, 905–911, 1998.

    Article  Google Scholar 

  • Gagnon, K., C. D. Chadwell, and E. Norabuena, Measuring the onset of locking in the Peru-Chile trench with GPS and acoustic measurements, Nature, 434, 205–208, 2005.

    Article  Google Scholar 

  • Gordon, R. G. and S. Stein, Global tectonics and space geodesy, Science, 256, 333–342, 1992.

    Article  Google Scholar 

  • Lambeck, K., Geophysical Geodesy: The Slow Deformations of the Earth, Clarendon Press, Oxford, 1988.

    Google Scholar 

  • Lurton, X., An Introduction to Underwater Acoustics, Springer, London, 2002.

    Google Scholar 

  • Obana, K., H. Katao, and M. Ando, Seafloor positioning system with GPSacoustic link for crustal dynamics observation—a preliminary result from experiments in the sea, Earth Planets Space, 52, 415–423, 2000.

    Article  Google Scholar 

  • Prescott, W. H., The determination of displacement fields from geodetic data along a strike slip fault, J. Geophys. Res., B86, 6067–6072, 1981.

    Article  Google Scholar 

  • Purcell, G. H., L. E. Young, S. K. Wolf, T. K. Meehan, C. B. Duncan, S. S. Fisher, F. N. Spiess, G. Austin, D. E. Boegeman, C. D. Lowenstein, C. Rocken, and T. M. Kelecy, Accurate GPS measurement of the location and orientation of a floating platform, Mar. Geod., 14, 255–264, 1990.

    Article  Google Scholar 

  • Shimamura, H. and T. Kanazawa, Ocean bottom tiltmeter with acoustic data-retrieval system implanted by a submersible, Mar. Geophys. Res., 9, 237–254, 1988.

    Article  Google Scholar 

  • Spiess, F. N., Acoustic techniques for marine geodesy, Mar. Geod., 4, 13–27, 1980.

    Article  Google Scholar 

  • Spiess, F. N., Suboceanic geodetic measurements, IEEE Trans. Geosc. Remote Sens., GE-23, 502–510, 1985a.

    Article  Google Scholar 

  • Spiess, F. N., Analysis of a possible sea floor strain measurement system, Mar. Geod., 9, 385–398, 1985b.

    Article  Google Scholar 

  • Spiess, F. N., D. Chadwell, J. A. Hildebrand, L. E. Young, G. H. Purcell, Jr., and H. Dragert, Precise GPS/acoustic positioning of seafloor reference points for tectonic studies, Phys. Earth Planet. Int., 108, 101–112, 1998.

    Article  Google Scholar 

  • Sweeney, A. D., C. D. Chadwell, J. A. Hildebrand, and F. N. Spiess, Centimeter-level positioning of seafloor acoustic transponders from a deeply towed interrogator, Mar. Geod., 28, 39–70, 2005.

    Article  Google Scholar 

  • Webb, S. C., Broadband seismology and noise under the ocean, Rev. Geophys., 36, 105–142, 1998.

    Article  Google Scholar 

  • Webb, S. C., T. K. Deaton, and J. C. Lemire, A broadband ocean-bottom seismometer system based on 1-Hz natural period geophone, Bull. Seismol. Soc. Am., 91, 304–312, 2001.

    Article  Google Scholar 

  • Yamada, T., M. Ando, K. Tadokoro, K. Sato, T. Okuda, and K. Oike, Error evaluation in acoustic positioning of a single transponder for seafloor crustal deformation measurements, Earth Planets Space, 54, 871–881, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiliang Xu.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Ando, M. & Tadokoro, K. Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques. Earth Planet Sp 57, 795–808 (2005). https://doi.org/10.1186/BF03351859

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351859

Key words