Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques

Abtract

Crustal deformation on land can now be measured and monitored routinely and precisely using space geodetic techniques. The same is not true of the seafloor, which covers about 70 percent of the earth surface, and is critical in terms of plate tectonics, submarine volcanism, and earthquake mechanisms of plate boundary types. We develop new data processing strategies for quantifying crustal deformation at the ocean floor: single- and double-difference methods. Theoretically, the single difference method can eliminate systematic errors of long period, while the double difference method is able to almost completely eliminate all depth-dependent and spatialdependent systematic errors. The simulations have shown that the transponders on the seafloor and thus the deformation of the seafloor can be determined with the accuracy of one centimeter in the single point positioning mode. Since almost all systematic errors (of temporal or spatial nature) have been removed by the double difference operator, the double difference method has been simulated to be capable of determining the threedimensional, relative position between two transponders on the seafloor even at the accuracy of sub-centimeters by employing and accumulating small changes in geometry over time. While the surveying strategy employed by the Scripps Institution of Oceanography (SIO) requires the ship maintain station, our technique requires the ship to move freely. The SIO approach requires a seafloor array of at least three transponders and that the relative positions of the transponders be pre-determined. Our approach directly positions a single transponder or relative positions of transponders, and thus measures deformation unambiguously.

References

  1. Anderson, G., S. Constable, H. Staudigel, and F. Wyatt, A seafloor longbaseline tiltmeter, J. Geophys. Res., B102, 20269–20285, 1997.

  2. Ando, M., Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, Japan, Tectonophys., 27, 119–140, 1975.

  3. Asada, A. and T. Yabuki, Centimeter-level positioning on the seafloor, Proc. Japan Acad. Ser. B, 77, 7–12, 2001.

  4. Chadwell, D., Shipboard towers for Global Positioning System antennas, Ocean Eng., 30, 1467–1487, 2003.

  5. Chadwell, D., F. Spiess, J. Hildebrand, L. Young, G. Purcell, Jr., and H. Dragert, Deep-sea geodesy: Monitoring the ocean floor, GPS World, 9, 44–55, 1998.

  6. Cohen, C. E., Attitude determination, in Global Positioning System: Theory and Applications, Vol. II, edited by B. W. Parkinson, J. J. Spilker, Jr., P. Axelrad and P. Enge, pp. 519–538, Amer. Inst. Aeronautics & Astronautics, Washington, 1996.

  7. Colosi, J. A., S. M. Flatté, and C. Bracher, Internal-wave effects on 1000-km oceanic acoustic pulse propagation: Simulation and comparison with experiment, J. Acoust. Soc. Am., 96, 452–468, 1994.

  8. Desaubies, Y., Ocean acoustic tomography, in Oceanographic and Geophysical Tomography, edited by Y. Desaubies, A. Tarantola, and J. Zinn-Justin, pp. 159–202, Elsevier, Amsterdam, 1990.

  9. Flatté, S. M. and M. D. Vera, Internal-wave time evolution effect on ocean acoustic rays, J. Acoust. Soc. Am., 112, 1359–1365, 2002.

  10. Flatté, S. M., R. Dashen, W. H. Munk, K. M. Watson, and F. Zachariasen, Sound Transmission trough a Fluctuating Ocean, Cambridge University Press, Cambridge, 1979.

  11. Frank, F. C., Deduction of earth strains from survey data, Bull. Seismol. Soc. Am., 56, 35–42, 1966.

  12. Fujimoto, H., T. Kanazawa, and H. Murakami, Experiment on precise seafloor acoustic ranging—A promising result of observation, J. Seismol. Soc. Japan, 48, 289–292, 1995 (in Japanese).

  13. Fujimoto, H., K. Koizumi, Y. Osada, and T. Kanazawa, Development of instruments for seafloor geodesy, Earth Planets Space, 50, 905–911, 1998.

  14. Gagnon, K., C. D. Chadwell, and E. Norabuena, Measuring the onset of locking in the Peru-Chile trench with GPS and acoustic measurements, Nature, 434, 205–208, 2005.

  15. Gordon, R. G. and S. Stein, Global tectonics and space geodesy, Science, 256, 333–342, 1992.

  16. Lambeck, K., Geophysical Geodesy: The Slow Deformations of the Earth, Clarendon Press, Oxford, 1988.

  17. Lurton, X., An Introduction to Underwater Acoustics, Springer, London, 2002.

  18. Obana, K., H. Katao, and M. Ando, Seafloor positioning system with GPSacoustic link for crustal dynamics observation—a preliminary result from experiments in the sea, Earth Planets Space, 52, 415–423, 2000.

  19. Prescott, W. H., The determination of displacement fields from geodetic data along a strike slip fault, J. Geophys. Res., B86, 6067–6072, 1981.

  20. Purcell, G. H., L. E. Young, S. K. Wolf, T. K. Meehan, C. B. Duncan, S. S. Fisher, F. N. Spiess, G. Austin, D. E. Boegeman, C. D. Lowenstein, C. Rocken, and T. M. Kelecy, Accurate GPS measurement of the location and orientation of a floating platform, Mar. Geod., 14, 255–264, 1990.

  21. Shimamura, H. and T. Kanazawa, Ocean bottom tiltmeter with acoustic data-retrieval system implanted by a submersible, Mar. Geophys. Res., 9, 237–254, 1988.

  22. Spiess, F. N., Acoustic techniques for marine geodesy, Mar. Geod., 4, 13–27, 1980.

  23. Spiess, F. N., Suboceanic geodetic measurements, IEEE Trans. Geosc. Remote Sens., GE-23, 502–510, 1985a.

  24. Spiess, F. N., Analysis of a possible sea floor strain measurement system, Mar. Geod., 9, 385–398, 1985b.

  25. Spiess, F. N., D. Chadwell, J. A. Hildebrand, L. E. Young, G. H. Purcell, Jr., and H. Dragert, Precise GPS/acoustic positioning of seafloor reference points for tectonic studies, Phys. Earth Planet. Int., 108, 101–112, 1998.

  26. Sweeney, A. D., C. D. Chadwell, J. A. Hildebrand, and F. N. Spiess, Centimeter-level positioning of seafloor acoustic transponders from a deeply towed interrogator, Mar. Geod., 28, 39–70, 2005.

  27. Webb, S. C., Broadband seismology and noise under the ocean, Rev. Geophys., 36, 105–142, 1998.

  28. Webb, S. C., T. K. Deaton, and J. C. Lemire, A broadband ocean-bottom seismometer system based on 1-Hz natural period geophone, Bull. Seismol. Soc. Am., 91, 304–312, 2001.

  29. Yamada, T., M. Ando, K. Tadokoro, K. Sato, T. Okuda, and K. Oike, Error evaluation in acoustic positioning of a single transponder for seafloor crustal deformation measurements, Earth Planets Space, 54, 871–881, 2002.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peiliang Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Ando, M. & Tadokoro, K. Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques. Earth Planet Sp 57, 795–808 (2005). https://doi.org/10.1186/BF03351859

Download citation

Key words

  • Crustal deformation
  • seafloor geodesy
  • geodynamics