Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Low latitude Ne and Te variations at 600 km during 1 March 1982 storm from HINOTORI satellite

Abstract

This paper presents for the first time a study of HINOTORI satellite measurements of electron density and electron temperature in the topside ionosphere exclusively for magnetic storm departures. Special focus was given to the major storm of 1 March, 1982. While large enhancements in Te characterize the day time storm response, marked increases in Ne dominate the night time deviations. The night time Ne enhancements which are rather remarkable during 0000–0400 LT are also found to be accompanied by significant Te increases, by as much as 300 K. The statistical picture that emerges from the study of a large number of storms suggests significant nocturnal Te enhancements which correlate with the magnitudes of storm intensities. Ring current particles through charge exchange processes seem to be a major source of heat input to thermal electrons, though other sources may also be important.

References

  1. Abdu, M. A., Major phenomena of the equatorial ionospherethermosphere system under disturbed conditions, J. Atmos. Terr. Phys., 13, 1505–1519, 1997.

    Article  Google Scholar 

  2. Abdu, M. A., J. H. Sastri, J. MacDougall, I. S. Batista, and J. H. A. Sobral, Equatorial disturbance dynamo electric field, longitudinal structure and spread-F: a case study from GUARA/EITS campaigns, Geophys. Res. Lett., 24(13), 1707–1710, 1997.

    Article  Google Scholar 

  3. Abdu. M. A., I. S. Batista, H. Takahashi, J. MacDougall, J. H. A. Sobral, F. Medeiros, and N. B. Trivedi, Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector, J. Geophys. Res., 108, A12, 10.1029/2002JA009721, 2003.

    Google Scholar 

  4. Banks, P. M., Charged particle temperatures and electron thermal conductivity in the upper atmosphere, Ann. Geophys., 22, 577–587, 1966.

    Google Scholar 

  5. Blanc, M. and A. D. Richmond, The ionospheric disturbance dynamo, J. Geophys. Res., 85, 1669–1688, 1980.

    Article  Google Scholar 

  6. Brace, L. H., B. M. Reddy, and H. G. Mayr, Global behaviour of the ionosphere at 1000-Kilometer altitude, J. Geophys Res., 72, 265–283, 1967.

    Article  Google Scholar 

  7. Chen, M., M. Schulz, and L. R. Lyons, Modeling of ring current formation and decay, in Magnetic Storms, Geophysical Monograph, 98, pp. 173- 186, AGU, Washington, D.C., 1997.

    Google Scholar 

  8. Dabas, R. S., B. M. Reddy, D. R. Lakshmi, and K. I. Oyama, Study of anomalous electron temperature variations in the topside ionosphere using HINOTORI satellite data, Journal of Atmos. Solar-Terr Phys, 62, 1351–1359, 2000.

    Article  Google Scholar 

  9. Dalgarno, A. and M. B. McElroy, Ionospheric electron temperatures near dawn, Planet. Space Sci., 13, 143–145, 1965.

    Article  Google Scholar 

  10. Fejer, B. G., Equatorial ionospheric electric fields associated with magnetospheric disturbances, in Solar Wind Magnetosphere Coupling, Y. Kamide and J. Slavin (Ed), pp. 519–545, Terra Scientific Publishing Lt. Tokyo, 1986.

    Google Scholar 

  11. Fejer, B. G. and L. Scherliess, Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances, Geophys. Res. Lett., 22, 851–854, 1995.

    Article  Google Scholar 

  12. Fejer, B. G., J. T. Emmert, G. G. Shepherd, and B. H. Solheim, Average day time F region disturbance neutral winds measured by UARS: initial results, Geophys. Res. Lett, 27, 1859–1862, 2000.

    Article  Google Scholar 

  13. Fesen, C. G., G. Crowley, and R. G. Roble, Ionospheric effects at low latitudes during the March 22, 1979, geomagnetic storm, J. Geophys. Res., 94, 5405–5417, 1989.

    Article  Google Scholar 

  14. Fok, M. C, J. U. Kozyra, and A. F. Nagy, Lifetime of ring current particles due to Coulomb collisions in the plasmasphere, J. Geophys. Res., 96, 7861–7867, 1991.

    Article  Google Scholar 

  15. Fok, M. C, J. U. Kozyra, A. F. Nagy, C. E. Rasmussen, and V. Khazanov, Decay of equatorial ring current ions and associated aeronomical consequences, J. Geophys. Res., 98, 19381–19393, 1993.

    Article  Google Scholar 

  16. Fok, M. C., P. D. Craven, T. E. Moore, and P. G. Richards, Ring currentplasmasphere coupling through Coulomb collisions, in Cross-scale Coupling in Space Plasmas, Geophysical Monograph, 93, pp. 161–171, AGU, Washington, D.C., 1995.

    Article  Google Scholar 

  17. Foster, J. C., P. J. Erickson, J. M. Holt, and F. J. Rich, Millstone Hill radar observations of mid-latitude electron temperature enhancement during the January 10, 1997, storm, Eos Trans. AGU, Fall Meet. Suppl., 78(46), F520, 1997.

    Google Scholar 

  18. Fuller-Rowell, T. J., G. H. Millward, A. D. Richmond, and M. V. Codrescu, Storm-time changes in the upper atmosphere at low latitudes, J. Atmos. and Solar-Terr. Phys., 64, 1383–1391, 2002.

    Article  Google Scholar 

  19. Hanson, W. B. and R. Cohen, Photoelectron heating efficiency in the ionosphere, J. Geophys. Res., 73, 831–840, 1968.

    Article  Google Scholar 

  20. Hedin, A. E., Extension of the MSIS thermospheric model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159, 1991.

    Article  Google Scholar 

  21. Isoda, F., Behaviour of Neand Teover equator, Master Thesis, Yokohama National University, unpublished, 1996.

    Google Scholar 

  22. Kozyra, J. U. and A. F. Nagy, Ring current decay—coupling of ring current energy into the thermosphere/ionosphere system, J. Geomag. Geoelectr., 43, Suppl., 285–297, 1991.

    Article  Google Scholar 

  23. Liemohn. M. W., J. U. Kozyra, P. G. Richards, G. V. Khazanov, M. J. Buonsanto, and V. K. Jordanova, Ring current heating of the thermal electrons at solar maximum, J. Geophys. Res., 105, 27767–27776, 2000.

    Article  Google Scholar 

  24. Oyama, K. I. and K. Schlegel, Anomalous electron temperatures above South American magnetic anomaly, Planetary and Space Science, 32, 1513–1522, 1984.

    Article  Google Scholar 

  25. Oyama, K. I., N. Balan, S. Watanabe, T. Takahashi, F. Isoda, G. J. Bailey, and H. Oya, Morning overshoot of Te enhanced by downward plasma drift in the equatorial topside ionosphere, J. Geomag. Geoelectr., 48, 959–966, 1996.

    Article  Google Scholar 

  26. Oyama, K. I., M. A. Abdu, N. Balan, G. J. Bailey, S. Watanabe, T. Takahashi, E. R. de Paula, I. S. Batista, F. Isoda, and H. Oya, High electron temperature associated with the prereversal enhancement in the equatorial ionosphere, J. Geophys. Res., 102, 1513–1522, 1997.

    Article  Google Scholar 

  27. Oyama, K. I., P. Morinov, and I. Kutiev, Model electron temperature variations in low latitudes at 600 km, based on HINOTORI data, International Reference Ionosphere (IRI) News, Vol. 9, No. 1, March 2002.

    Google Scholar 

  28. Prolss, G. W., Magnetic storm associated perturbations of upper atmosphere, in Magnetic Storms, Geophysical Monograph, 98, pp. 227–241, AGU, Washington, D.C., 1997.

    Google Scholar 

  29. Reddy, B. M., L. H. Brace, and J. A. Findlay, The ionosphere at 640 kilometers on quite and disturbed days, J. Geophys. Res., 72, 2709–2727, 1967.

    Article  Google Scholar 

  30. Richards, P. G., Ion and neutral density variations during ionospheric storms in September 1974: Comparison of measurement and models, J. Geophys. Res., 107, A11, 1361, doi:10.1029/2002JA009278, 2002.

    Article  Google Scholar 

  31. Richards, P. G. and D. G. Torr, The altitude variation of the ionospheric photoelectron flux: A comparison of theory and measurement, J. Geophys. Res., 90, 2877–2884, 1985.

    Article  Google Scholar 

  32. Richards, P. G., P. L. Dyson, T. P. Davies, M. L. Parkinson, and A. J. Reeves, Behaviour of the ionosphere and thermosphere at a southern mid latitude station during magnetic storms in early March 1995, J. Geophys. Res., 103, 26421–26432, 1998.

    Article  Google Scholar 

  33. Richards, P. G., M. J. Buonsanto, B.W. Reinisch, J. Holt, J. A. Fennelly, I. L. Scali, R. H. Comfort, G. A. Germany, J. Spann, M. Brittnacher, and M. C. Fok, On the relative importance of convection and temperature on the behavior of the ionosphere in North America during January 6–12, 1997, J. Geophys. Res., 105, 12763–12776, 2000.

    Article  Google Scholar 

  34. Tinsley, B. A., Energetic neutral atom precipitation during magnetic storms: Optical emission, ionization and energy deposition at low and mid latitudes, J. Geophys. Res., 84, 1855–1864, 1979.

    Article  Google Scholar 

  35. Tinsley, B. A., Y. Sahai, M. A. Biondi, and J. W. Merriwether Jr., Equatorial particle precipitation during magnetic storms and relation to equatorial thermosphere heating, J. Geophys. Res., 93, 270–276, 1988.

    Article  Google Scholar 

  36. Titheridge, J. E., Winds in the ionosphere—A Review, J. Atmos. Terr. Phys, 57, 1681–1714, 1995.

    Article  Google Scholar 

  37. Watanabe, S. and K. I. Oyama, Effects of neutral wind on the electron temperature at a height of 600 km in the low latitude region, Ann. Geophys, 14, 290–296, 1996.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. I. Oyama.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oyama, K.I., Lakshmi, D.R., Kutiev, I. et al. Low latitude Ne and Te variations at 600 km during 1 March 1982 storm from HINOTORI satellite. Earth Planet Sp 57, 871–878 (2005). https://doi.org/10.1186/BF03351864

Download citation

Key words

  • Electron temperature
  • ionospheric storm
  • low latitude
  • satellite data
  • storm time