Skip to main content

Pitch angle diffusion of electrons at the boundary of the lunar wake

Abstract

Velocity distribution of the solar wind electrons that penetrate through the lunar wake boundary is investigated by calculating orbits of the electrons injected into model structures of layers of electric fields. Only the electrons with sufficient energy to overcome the potential difference penetrate through the wake boundary. The electrons injected along the magnetic field lines which intersect the model structure undergo pitch angle scattering due to electric field component perpendicular to the magnetic field. After the passage through the electric field, the electrons have significant perpendicular component of velocity as well as the parallel component larger than a lower limit, which is dependent on the electric potential of the wake boundary. The velocity distribution can account for the cyclotron resonance with sunward-propagating whistler mode waves that were detected by GEOTAIL at 27 lunar radii upstream of the moon on October 25, 1994.

References

  1. Birch, P. C. and S. C. Chapman, Correction to “Particle-in-cell simulations of the lunar wake with high phase resolution”, Geophys. Res. Lett., 28, 2669, 2001.

    Article  Google Scholar 

  2. Birch, P. C. and S. C. Chapman, Two dimensional particle-in-cell simulations of the lunar wake, Phys. Plasmas, 9, 1785–1789, 2002.

    Article  Google Scholar 

  3. Bosqued, J. M., N. Lormant, H. Rème, C. d’Uston, R. P. Lin, K. A. Anderson, C. W. Carlson, R. E. Ergun, D. Larson, J. McFadden, M. P. McCarthy, G. K. Parks, T. R. Sanderson, and K.-P. Wenzel, Moonsolar wind interaction: First results from the WIND/3DP experiment, Geophys. Res. Lett., 23, 1259–1262, 1996.

    Article  Google Scholar 

  4. Colburn, D. S., R. G. Currie, J. D. Mihalov, and C. P. Sonett, Diamagnetic solar-wind cavity discovered behind moon, Science, 158, 1040–1042, 1967.

    Article  Google Scholar 

  5. Farrell, W. M., R. J. Fitzenreiter, C. J. Owen, J. B. Byrnes, R. P. Lepping, K. W. Ogilvie, and F. Neubauer, Upstream ULF waves and energetic electrons associated with the lunar wake: Detection of precursor activity, Geophys. Res. Lett., 23, 1271–1274, 1996.

    Article  Google Scholar 

  6. Farrell, W. M., M. L. Kaiser, J. T. Steinberg, and S. D. Bale, A simple simulation of a plasma void: Applications to Wind observations of the lunar wake, J. Geophys. Res., 103, 23635–23653, 1

    Google Scholar 

  7. Feldman, W. C., J. R. Asbridge, S. J. Bame, M. D. Montgomery, and S. P. Gary, Solar wind electrons, J. Geophys. Res., 80, 4181–4196, 1975.

    Article  Google Scholar 

  8. Futaana, Y., S. Machida, T. Saito, A. Matsuoka, and H. Hayakawa, Counterstreaming electrons in the near vicinity of the moon observed by plasma instruments on board NOZOMI, J. Geophys. Res., 106, 18729–18740, 2001.

    Article  Google Scholar 

  9. Gosling, J. T., D. N. Baker, S. J. Bame, W. C. Feldman, R. D. Zwickl, and E. J. Smith, Bidirectional solar wind electron heat flux events, J. Geophys. Res., 92, 8519–8535, 1987.

    Article  Google Scholar 

  10. Guio, P. and H. L. Pécseli, Phase space structures generated by an absorbing obstacle in a streaming plasma, Geophys. Res. Lett., 31, L03806, 2004.

    Article  Google Scholar 

  11. Lin, R. P., D. L. Mitchell, D. W. Curtis, K. A. Anderson, C. W. Carlson, J. McFadden, M. H. Acuña, L. L. Hood, and A. Binder, Lunar surface magnetic fields and their interaction with the solar wind: Results from Lunar Prospector, Science, 281, 1480–1484, 1998.

    Article  Google Scholar 

  12. McComas, D. J., J. T. Gosling, J. L. Phillips, S. J. Bame, J. G. Luhmann, and E. J. Smith, Electron heat flux dropouts in the solar wind: Evidence for interplanetary magnetic field reconnection?, J. Geophys. Res., 94, 6907–6916, 1989.

    Article  Google Scholar 

  13. Mukai, T., S. Machida, Y. Saito, M. Hirahara, T. Terasawa, N. Kaya, T. Obara, M. Ejiri, and A. Nishida, The low energy particle (LEP) experiment onboard the GEOTAIL satellite, J. Geomag. Geoelectr., 46, 669–692, 1994.

    Article  Google Scholar 

  14. Nakagawa, T., Y. Takahashi, and M. Iizima, GEOTAIL observation of upstream ULF waves associated with lunar wake, Earth Planets Space, 55, 569–580, 2003.

    Article  Google Scholar 

  15. Ness, N. F. and K. H. Shatten, Detection of interplanetary magnetic field fluctuations stimulated by the lunar wake, J. Geophys. Res., 74, 6425–6438, 1969.

    Article  Google Scholar 

  16. Ness, N. F., K.W. Behannon, H. E. Taylor, and Y. C. Whang, Perturbations of the interplanetary magnetic field by the lunar wake, J. Geophys. Res., 73, 3421–3440, 1968.

    Article  Google Scholar 

  17. Ogilvie, K.W., J. T. Steinberg, R. T. Fitzenreiter, C. J. Owen, A. J. Lazarus, W. M. Farrell, and R. B. Torbert, Observation of the lunar plasma wake from the WIND spacecraft on December 27, 1994, Geophys. Res. Lett., 23, 1255–1258, 1996.

    Article  Google Scholar 

  18. Owen, C. J., R. P. Lepping, K. W. Ogilvie, J. A. Slavin, W. M. Farrell, and J. B. Byrnes, The lunar wake at 6.8 RL: WIND magnetic field observations, Geophys. Res. Lett., 23, 1263–1266, 1996.

    Article  Google Scholar 

  19. Phillips, J. L., J. T. Gosling, D. J. McComas, S. J. Bame, and S. P. Gary, and E. J. Smith, Anisotropic thermal electron distributions in the solar wind, J. Geophys. Res., 94, 6563–6579, 1989.

    Article  Google Scholar 

  20. Pilipp, W. G., H. Miggenrieder, M. D. Montgomery, K.-H. Mühlhäuser, H. Rosenbauer, and R. Schwenn, Characteristicd of electron velocity distribution functionss in the solar wind derived from the Helios plasma experiment, J. Geophys. Res., 92, 1075–1092, 1987.

    Article  Google Scholar 

  21. Schubert, G. and B. R. Lichtenstein, Observations of moon-plasma interactions by orbital and surface experiments, Rev. Geophys. Space Phys., 12, 592–626, 1974.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomoko Nakagawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakagawa, T., Iizima, M. Pitch angle diffusion of electrons at the boundary of the lunar wake. Earth Planet Sp 57, 885–894 (2005). https://doi.org/10.1186/BF03351866

Download citation

Key words

  • Lunar wake
  • pitch angle diffusion
  • electric field
  • wake potential structure
  • electron distribution function