Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Short time-scale heating of the Earth’s mantle by ice-sheet dynamics

Abstract

We have studied the possibility of short time-scale energy transfer from the ice sheet loading and unloading processes to the Earth’s interior via viscous dissipation associated with the transient viscoelastic flow in the mantle. We have focussed on the magnitude of glacially induced deformations and the corresponding shear heating for an ice sheet of the spatial extent of Laurentide region in Maxwellian viscoelastic compressible models with a Newtonian viscosity. We have used a discretization method based on the method of lines for integrating the time-dependent evolutionary equations of self-gravitational, viscoelastic flow. We have found that shear heating from the transient viscoelastic flow can represent a non-negligible mantle energy source with cryogenic origins. Volumetric heating by viscous deformation associated with these flows can be locally greater than chondritic heating by radioactivity. In the presence of an abrupt change in the ice loading history, the time average of the integral of the dissipation over depth corresponds to a mantle heat flow of the order of magnitude of mW/m2 below the periphery of ancient ice sheets or below their central areas. However, the peak values of this integral in time are almost two orders higher. Our results would suggest that some degree of volcanism may be associated with dramatic episodes in ice loading.

References

  1. Balachandar, S., D. A. Yuen, D. M. Reuteler, and G. Lauer, Viscous dissipation in three dimensional convection with temperature-dependent viscosity, Science, 267, 1150–1153, 1995.

    Article  Google Scholar 

  2. Buttles, J., P. Malin, and A. Hunt, 2-D models of upper mantle viscosity variations due to ice sheet loading: Application to the Laurentide ice sheet, AGU Fall Meeting, abstract No. T32C-15, 1998.

    Google Scholar 

  3. Čermák, V. and E. Hurtig, Heat flow map of Europe, Enclosure for Terrestrial Heat Flow in Europe, edited by V. Čermák and L. Rybach, Springer, Berlin, New York, 1979.

    Google Scholar 

  4. Christensen, U., Convection with pressure-dependent and temperaturedependent non-Newtonian rheology, Geophys. J. R. Astr. Soc., 77, 343–384, 1984.

    Article  Google Scholar 

  5. Clark, P. U., S. J. Marshall, G. K. C. Clarke, S. W. Hostetler, J. M. Licciardi, and J. T. Teller, Freshwater forcing of abrupt climate change during the last glaciation, Science, 293, 283–287, 2001.

    Article  Google Scholar 

  6. Dziewonski, A. M. and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356, 1981.

    Article  Google Scholar 

  7. Erlebacher, G., D. A. Yuen, and F. Dubuffet, Current trends and demands in visualization in the geosciences, Electron. Geosciences, 4, http://link.springer-ny.com/link/service/journals/10069/technic/erlebach/index.htm, 2001.

  8. Gilbert, F. and R. Buland, Dissipation of energy radiated by earthquakes, Annali di Geofisica, 30, 471–489, 1977.

    Google Scholar 

  9. Goddéris, Y., Y. Donnadieu, A. Nédélec, B. Dupré, C. Dessert, A. Grard, G. Ramstein, and L. M. François, The Sturtian ‘snowball’ glaciation: fire and ice, Earth Planet. Sci. Lett., 211, 1–12, 2003.

    Google Scholar 

  10. Hanyk, L., Viscoelastic response of the Earth: Initial-value approach, Ph.D. Thesis, Charles University, Prague, Czech Republic, http://geo.mff.cuni.cz/~lh/phd, 1999.

    Google Scholar 

  11. Hanyk, L., J. Moser, D. A. Yuen, and C. Matyska, Time-domain approach for the transient responses in stratified viscoelastic Earth models, Geophys. Res. Lett., 22, 1285–1288, 1995.

    Article  Google Scholar 

  12. Hanyk, L., D. A. Yuen, and C. Matyska, Initial-value and modal approaches for transient viscoelastic responses with complex viscosity profiles, Geophys. J. Int., 127, 348–362, 1996.

    Article  Google Scholar 

  13. Hanyk, L., C. Matyska, and D. A. Yuen, Determination of viscoelastic spectra by matrix eigenvalue analysis, in Ice Sheets, Sea Level and the Dynamic Earth, edited by J. X. Mitrovica and B. L. A. Vermeersen, pp. 257–273, AGU, 2002.

    Google Scholar 

  14. Hanyk, L., C. Matyska, D. A. Yuen, and B. J. Kadlec, Visualization of viscous heating in the Earth’s mantle induced by glacial loading, Eos Trans. AGU, 84, Fall Meet. Suppl., Abstract NG11A-0166, 2003.

  15. Jaupart, C., J. C. Mareschal, and L. Guillou-Frottier, Heat flow and thickness of the lithosphere in the Canadian Shield, J. Geophys. Res., 103, 15269–15286, 1998.

    Article  Google Scholar 

  16. Joseph, D. D., Fluid Dynamics of Viscoelastic Liquids, Springer, New York etc., 1990.

    Google Scholar 

  17. Larsen, T. B. and D. A. Yuen, Fast plumeheads: Temperature-dependent versus non-Newtonian rheology, Geophys. Res. Lett., 24, 1995–1998, 1997.

    Article  Google Scholar 

  18. Larsen, T. B., D. A. Yuen, J. L. Smedsmo, and A. V. Malevsky, Generation of fast timescale phenomena in thermo-mechanical processes, Phys. Earth Planet. Inter., 102, 213–222, 1

    Article  Google Scholar 

  19. Larsen, T. B., D. A. Yuen, and M. Storey, Ultrafast mantle plumes and implications for flood basalt volcanism in the northern Atlantic region, Tectonophys., 311, 31–43, 1999.

    Article  Google Scholar 

  20. Leitch, A. and D. A. Yuen, Internal heating and thermal constraints on the mantle, Geophys. Res. Lett., 16, 1407–1410, 1989.

    Article  Google Scholar 

  21. Malevsky, A. V. and D. A. Yuen, Large-scale numerical simulations of turbulent non-Newtonian thermal-convection using method of characteristics, Comput. Phys. Commun., 73, 61–71, 1992a.

    Article  Google Scholar 

  22. Malevsky, A. V. and D. A. Yuen, Strongly chaotic non-Newtonian mantle convection, Geophys. Astro. Fluid Dyn., 65, 149–171, 1992b.

    Article  Google Scholar 

  23. Mitrovica, J. X. and A. M. Forte, A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sci. Lett., 225, 177–189, 2004.

    Article  Google Scholar 

  24. Mitrovica, J. X. and W. R. Peltier, Pleistocene deglaciation and the global gravity field, J. Geophys. Res., 94, 13651–13671, 1989.

    Article  Google Scholar 

  25. Nakada, M. and H. Yokose, Ice age as a trigger of active Quaternary volcanism and tectonism, Tectonophys., 212, 321–329, 1992.

    Article  Google Scholar 

  26. North Greenland Ice Core Project members, High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, 2004.

    Article  Google Scholar 

  27. Pasquale, V., M. Verdoya, and P. Chiozzi, Lithospheric thermal structure in the Baltic shield, Geophys. J. Int., 106, 611–620, 1991.

    Article  Google Scholar 

  28. Peale, S. J., P. Cassen, and R. T. Reynolds, Melting of Io by tidal dissipation, Science, 203, 892–894, 1979.

    Article  Google Scholar 

  29. Peltier, W. R., The impulse response of a Maxwell earth, Rev. Geophys. Space Phys., 12, 649–669, 1974.

    Article  Google Scholar 

  30. Peltier, W. R., GRACE signatures of global glacial isostasy and modern polar ice sheet melting, Geophysical Research Abstracts, 5, 02943, 2003.

    Google Scholar 

  31. Regenauer-Lieb, K. and D. A. Yuen, Rapid conversion of elastic energy into plastic shear heating during incipient necking of the lithosphere, Geophys. Res. Lett., 25, 2737–2740, 1998.

    Article  Google Scholar 

  32. Regenauer-Lieb, K. and D. A. Yuen, Modeling shear zones in geological and planetary sciences: solid- and fluid-thermalmechanical approaches, Earth Sci. Rev., 63, 295–349, 2003.

    Article  Google Scholar 

  33. Regenauer-Lieb, K. and D. A. Yuen, Positive feedback of interacting ductile faults from coupling of equation of state, rheology and thermalmechanics, Phys. Earth Planet. Inter., 142, 113–135, 2004.

    Article  Google Scholar 

  34. Ross, M. N. and G. Schubert, Tidal heating in an internal heating model of Europa, Nature, 325, 133–144, 1987.

    Article  Google Scholar 

  35. Schiesser, W. E., Computational Mathematics in Engineering and Applied Science: ODEs, DAEs, and PDEs, Chapter 4, CRC, Florida, 1994.

    Google Scholar 

  36. Segatz, M., T. Spohn, M. N. Ross, and G. Schubert, Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io, Icarus, 75, 187–206, 1

    Article  Google Scholar 

  37. Siddall, M., E. J. Rohling, A. Almogi-Labin, Ch. Hemleben, D. Meischner, I. Schmelzer, and D. A. Smeed, Sea-level fluctuations during the last glacial cycle, Nature, 423, 813–814, 2003.

    Article  Google Scholar 

  38. Stein, C. A., Heat flow of the Earth, in Global Earth Physics: A Handbook of Physical Constants, edited by T. J. Ahrens, pp. 144–158, AGU, 1995.

    Google Scholar 

  39. van den Berg, A. P. and D. A. Yuen, The role of shear heating in lubricating mantle flow, Earth Planet. Sci. Lett., 151, 33–42, 1997.

    Article  Google Scholar 

  40. Wu, P. and W. R. Peltier, Viscous gravitational relaxation, Geophys. J. R. Astr. Soc., 70, 435–485, 1982.

    Article  Google Scholar 

  41. Yuan, D., H. Cheng, R. L. Edwards, C. A. Dykoski, M. J. Kelly, M. Zhang, J. Qing, Y. Lin, W. Wang, J. Wu, J. A. Dorale, Z. An, and Y. Cai, Timing, duration and transitions of the last interglacial Asian monsoon, Science, 304, 575–578, 2004.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ladislav Hanyk.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanyk, L., Matyska, C. & Yuen, D.A. Short time-scale heating of the Earth’s mantle by ice-sheet dynamics. Earth Planet Sp 57, 895–902 (2005). https://doi.org/10.1186/BF03351867

Download citation

Key words

  • Viscoelasticity
  • heat dissipation
  • postglacial rebound