Skip to main content

Short time-scale heating of the Earth’s mantle by ice-sheet dynamics

Abstract

We have studied the possibility of short time-scale energy transfer from the ice sheet loading and unloading processes to the Earth’s interior via viscous dissipation associated with the transient viscoelastic flow in the mantle. We have focussed on the magnitude of glacially induced deformations and the corresponding shear heating for an ice sheet of the spatial extent of Laurentide region in Maxwellian viscoelastic compressible models with a Newtonian viscosity. We have used a discretization method based on the method of lines for integrating the time-dependent evolutionary equations of self-gravitational, viscoelastic flow. We have found that shear heating from the transient viscoelastic flow can represent a non-negligible mantle energy source with cryogenic origins. Volumetric heating by viscous deformation associated with these flows can be locally greater than chondritic heating by radioactivity. In the presence of an abrupt change in the ice loading history, the time average of the integral of the dissipation over depth corresponds to a mantle heat flow of the order of magnitude of mW/m2 below the periphery of ancient ice sheets or below their central areas. However, the peak values of this integral in time are almost two orders higher. Our results would suggest that some degree of volcanism may be associated with dramatic episodes in ice loading.

References

  • Balachandar, S., D. A. Yuen, D. M. Reuteler, and G. Lauer, Viscous dissipation in three dimensional convection with temperature-dependent viscosity, Science, 267, 1150–1153, 1995.

    Article  Google Scholar 

  • Buttles, J., P. Malin, and A. Hunt, 2-D models of upper mantle viscosity variations due to ice sheet loading: Application to the Laurentide ice sheet, AGU Fall Meeting, abstract No. T32C-15, 1998.

    Google Scholar 

  • Čermák, V. and E. Hurtig, Heat flow map of Europe, Enclosure for Terrestrial Heat Flow in Europe, edited by V. Čermák and L. Rybach, Springer, Berlin, New York, 1979.

    Google Scholar 

  • Christensen, U., Convection with pressure-dependent and temperaturedependent non-Newtonian rheology, Geophys. J. R. Astr. Soc., 77, 343–384, 1984.

    Article  Google Scholar 

  • Clark, P. U., S. J. Marshall, G. K. C. Clarke, S. W. Hostetler, J. M. Licciardi, and J. T. Teller, Freshwater forcing of abrupt climate change during the last glaciation, Science, 293, 283–287, 2001.

    Article  Google Scholar 

  • Dziewonski, A. M. and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356, 1981.

    Article  Google Scholar 

  • Erlebacher, G., D. A. Yuen, and F. Dubuffet, Current trends and demands in visualization in the geosciences, Electron. Geosciences, 4, http://link.springer-ny.com/link/service/journals/10069/technic/erlebach/index.htm, 2001.

  • Gilbert, F. and R. Buland, Dissipation of energy radiated by earthquakes, Annali di Geofisica, 30, 471–489, 1977.

    Google Scholar 

  • Goddéris, Y., Y. Donnadieu, A. Nédélec, B. Dupré, C. Dessert, A. Grard, G. Ramstein, and L. M. François, The Sturtian ‘snowball’ glaciation: fire and ice, Earth Planet. Sci. Lett., 211, 1–12, 2003.

    Google Scholar 

  • Hanyk, L., Viscoelastic response of the Earth: Initial-value approach, Ph.D. Thesis, Charles University, Prague, Czech Republic, http://geo.mff.cuni.cz/~lh/phd, 1999.

    Google Scholar 

  • Hanyk, L., J. Moser, D. A. Yuen, and C. Matyska, Time-domain approach for the transient responses in stratified viscoelastic Earth models, Geophys. Res. Lett., 22, 1285–1288, 1995.

    Article  Google Scholar 

  • Hanyk, L., D. A. Yuen, and C. Matyska, Initial-value and modal approaches for transient viscoelastic responses with complex viscosity profiles, Geophys. J. Int., 127, 348–362, 1996.

    Article  Google Scholar 

  • Hanyk, L., C. Matyska, and D. A. Yuen, Determination of viscoelastic spectra by matrix eigenvalue analysis, in Ice Sheets, Sea Level and the Dynamic Earth, edited by J. X. Mitrovica and B. L. A. Vermeersen, pp. 257–273, AGU, 2002.

    Chapter  Google Scholar 

  • Hanyk, L., C. Matyska, D. A. Yuen, and B. J. Kadlec, Visualization of viscous heating in the Earth’s mantle induced by glacial loading, Eos Trans. AGU, 84, Fall Meet. Suppl., Abstract NG11A-0166, 2003.

  • Jaupart, C., J. C. Mareschal, and L. Guillou-Frottier, Heat flow and thickness of the lithosphere in the Canadian Shield, J. Geophys. Res., 103, 15269–15286, 1998.

    Article  Google Scholar 

  • Joseph, D. D., Fluid Dynamics of Viscoelastic Liquids, Springer, New York etc., 1990.

    Book  Google Scholar 

  • Larsen, T. B. and D. A. Yuen, Fast plumeheads: Temperature-dependent versus non-Newtonian rheology, Geophys. Res. Lett., 24, 1995–1998, 1997.

    Article  Google Scholar 

  • Larsen, T. B., D. A. Yuen, J. L. Smedsmo, and A. V. Malevsky, Generation of fast timescale phenomena in thermo-mechanical processes, Phys. Earth Planet. Inter., 102, 213–222, 1

    Article  Google Scholar 

  • Larsen, T. B., D. A. Yuen, and M. Storey, Ultrafast mantle plumes and implications for flood basalt volcanism in the northern Atlantic region, Tectonophys., 311, 31–43, 1999.

    Article  Google Scholar 

  • Leitch, A. and D. A. Yuen, Internal heating and thermal constraints on the mantle, Geophys. Res. Lett., 16, 1407–1410, 1989.

    Article  Google Scholar 

  • Malevsky, A. V. and D. A. Yuen, Large-scale numerical simulations of turbulent non-Newtonian thermal-convection using method of characteristics, Comput. Phys. Commun., 73, 61–71, 1992a.

    Article  Google Scholar 

  • Malevsky, A. V. and D. A. Yuen, Strongly chaotic non-Newtonian mantle convection, Geophys. Astro. Fluid Dyn., 65, 149–171, 1992b.

    Article  Google Scholar 

  • Mitrovica, J. X. and A. M. Forte, A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sci. Lett., 225, 177–189, 2004.

    Article  Google Scholar 

  • Mitrovica, J. X. and W. R. Peltier, Pleistocene deglaciation and the global gravity field, J. Geophys. Res., 94, 13651–13671, 1989.

    Article  Google Scholar 

  • Nakada, M. and H. Yokose, Ice age as a trigger of active Quaternary volcanism and tectonism, Tectonophys., 212, 321–329, 1992.

    Article  Google Scholar 

  • North Greenland Ice Core Project members, High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, 2004.

    Article  Google Scholar 

  • Pasquale, V., M. Verdoya, and P. Chiozzi, Lithospheric thermal structure in the Baltic shield, Geophys. J. Int., 106, 611–620, 1991.

    Article  Google Scholar 

  • Peale, S. J., P. Cassen, and R. T. Reynolds, Melting of Io by tidal dissipation, Science, 203, 892–894, 1979.

    Article  Google Scholar 

  • Peltier, W. R., The impulse response of a Maxwell earth, Rev. Geophys. Space Phys., 12, 649–669, 1974.

    Article  Google Scholar 

  • Peltier, W. R., GRACE signatures of global glacial isostasy and modern polar ice sheet melting, Geophysical Research Abstracts, 5, 02943, 2003.

    Google Scholar 

  • Regenauer-Lieb, K. and D. A. Yuen, Rapid conversion of elastic energy into plastic shear heating during incipient necking of the lithosphere, Geophys. Res. Lett., 25, 2737–2740, 1998.

    Article  Google Scholar 

  • Regenauer-Lieb, K. and D. A. Yuen, Modeling shear zones in geological and planetary sciences: solid- and fluid-thermalmechanical approaches, Earth Sci. Rev., 63, 295–349, 2003.

    Article  Google Scholar 

  • Regenauer-Lieb, K. and D. A. Yuen, Positive feedback of interacting ductile faults from coupling of equation of state, rheology and thermalmechanics, Phys. Earth Planet. Inter., 142, 113–135, 2004.

    Article  Google Scholar 

  • Ross, M. N. and G. Schubert, Tidal heating in an internal heating model of Europa, Nature, 325, 133–144, 1987.

    Article  Google Scholar 

  • Schiesser, W. E., Computational Mathematics in Engineering and Applied Science: ODEs, DAEs, and PDEs, Chapter 4, CRC, Florida, 1994.

    Google Scholar 

  • Segatz, M., T. Spohn, M. N. Ross, and G. Schubert, Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io, Icarus, 75, 187–206, 1

    Article  Google Scholar 

  • Siddall, M., E. J. Rohling, A. Almogi-Labin, Ch. Hemleben, D. Meischner, I. Schmelzer, and D. A. Smeed, Sea-level fluctuations during the last glacial cycle, Nature, 423, 813–814, 2003.

    Article  Google Scholar 

  • Stein, C. A., Heat flow of the Earth, in Global Earth Physics: A Handbook of Physical Constants, edited by T. J. Ahrens, pp. 144–158, AGU, 1995.

    Google Scholar 

  • van den Berg, A. P. and D. A. Yuen, The role of shear heating in lubricating mantle flow, Earth Planet. Sci. Lett., 151, 33–42, 1997.

    Article  Google Scholar 

  • Wu, P. and W. R. Peltier, Viscous gravitational relaxation, Geophys. J. R. Astr. Soc., 70, 435–485, 1982.

    Article  Google Scholar 

  • Yuan, D., H. Cheng, R. L. Edwards, C. A. Dykoski, M. J. Kelly, M. Zhang, J. Qing, Y. Lin, W. Wang, J. Wu, J. A. Dorale, Z. An, and Y. Cai, Timing, duration and transitions of the last interglacial Asian monsoon, Science, 304, 575–578, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Hanyk.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanyk, L., Matyska, C. & Yuen, D.A. Short time-scale heating of the Earth’s mantle by ice-sheet dynamics. Earth Planet Sp 57, 895–902 (2005). https://doi.org/10.1186/BF03351867

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351867

Key words