Skip to main content

Caldera geometry determined by the depth of the magma chamber

Abstract

The depth of the magma chamber is shown to be an important factor governing the initial type, scale, and collapse of a caldera. The collapse of the magma chamber is approximated by the contraction of a sphere in an elastic medium, and the distribution of plastic and/or rupturing area on the surface is calculated using the Coulomb failure criterion under the assumption of an elastic-perfectly plastic material. It is found that the necessary contraction for the formation of a caldera is described by fifth-power polynomial expression of the depth of the magma chamber, and that the radius and geometry of the caldera are dependent on the depth of the magma chamber.

References

  1. Acocella, V., F. Cifelli and R. Funiciello, Analogue models of collapse calderas and resurgent domes, J. Volcanol. Geotherm. Res., 104, 81–96, 2000.

    Article  Google Scholar 

  2. Gudmundsson, A., Effect of tensile stress concentration around magma chambers on intrusion and extrusion frequencies, J. Volcanol. Geotherm. Res., 35, 179–194, 1988.

    Article  Google Scholar 

  3. Gudmundsson, A., Formation and development of normal-fault calderas and the initiation of large explosive eruptions, Bull. Volcanol., 60, 160–170, 1998.

    Article  Google Scholar 

  4. Gudmundsson, A., Emplacement and arrest of sheets and dykes in central volcanoes, J. Volcanol. Geotherm. Res., 116, 279–298, 2002.

    Article  Google Scholar 

  5. Gudmundsson, A., Surface stresses associated with arrested dykes in rift zones, Bull. Volcanol., 65, 606–619, 2003.

    Article  Google Scholar 

  6. Gudmundsson, A., J. Marti, and E. Turon, Stress fields generating ring faults in volcanoes, Geophys. Res. Lett., 24, 1559–1562, 1997.

    Article  Google Scholar 

  7. Hagiwara, Y., Theory of Geogravity, Kyoritsu-zensyo, Tokyo, 242 pp., 1978 (in Japanese).

    Google Scholar 

  8. Jaeger, J. C. and N. G. Cook, Fundamentals of Rock Mechanics, Methuen, London, 513 pp., 1969.

    Google Scholar 

  9. Komuro, H., Experiments on cauldron formation: a polygonal cauldron and ring fractures, J. Volcanol. Geotherm. Res., 31, 139–149, 1987.

    Article  Google Scholar 

  10. Kusumoto, S. and K. Takemura, Numerical simulation of caldera formation due to collapse of a magma chamber, Geophys. Res. Lett., 30(24), 2278, doi10.1029/2003GL018380, 2003.

    Article  Google Scholar 

  11. Lipman, P. W., Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry, Bull. Volcanol., 59, 198–218, 1997.

    Article  Google Scholar 

  12. Marti, J., G. J. Ablay, L. T. Redshaw, and R. S. J. Sparks, Experimental studies of collapse calderas, J. Geol. Soc. London, 151, 919–929, 1994.

    Article  Google Scholar 

  13. McTigue, D. F., Elastic stress and deformation near a finite spherical magma body: resolution of the point source paradox, J. Geophys. Res., 92, 12931–12940, 1987.

    Article  Google Scholar 

  14. Mogi, K., Relations between eruptions of various volcanoes and the deformation of the ground surface around them, Bull. Earthquake Res. Inst., 36, 99–134, 1958.

    Google Scholar 

  15. Nakamura, K., Volcanoes as possible indicators of tectonic stress orientation—principle and proposal, J. Volocanol. Geotherm. Res., 2, 1–16, 1977.

    Article  Google Scholar 

  16. Roche, O., T. H. Druitt, and O. Merle, Experimental study of caldera formation, J. Geophys. Res., 105, 395–416, 2000.

    Article  Google Scholar 

  17. Rymer, H., B. van Vries, J. Stix, and G. Williams-Jones, Pit crater structure and processes governing persistent activity at Masaya volcano, Nicaragua, Bull. Volcanol., 59, 345–355, 1998.

    Article  Google Scholar 

  18. Segall. P. and D. D. Pollard, Mechanics of Discontinuous Faults, J. Geophys. Res., 85, 4337–4350, 1980.

    Article  Google Scholar 

  19. Tsuchida, E. and I. Nakahara, Stresses in a semi-infinite body subjected to uniform pressure on the surface of a cavity and the plane boundary, Bull. JSME, 15, 1–12, 1972.

    Article  Google Scholar 

  20. Yamaji, A., Introduction to Theoretical Tectonics, Asakura Syoten, Tokyo, 287 pp., 2000 (in Japanese).

    Google Scholar 

  21. Yoshida, T., Tertiary Ishizuki cauldron, southwestern Japan arc formation by ring fracture subsidence, J. Geophys. Res., 89, 8502–8510, 1984.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shigekazu Kusumoto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kusumoto, S., Takemura, K. Caldera geometry determined by the depth of the magma chamber. Earth Planet Sp 57, e17–e20 (2005). https://doi.org/10.1186/BF03351879

Download citation

Key words

  • Caldera
  • magma chamber
  • caldera geometry
  • depth of magma chamber
  • numerical simulation