Skip to main content

Strong S-wave anisotropy in the aftershock region of the 2000 Tottori-ken Seibu, Japan, earthquake (Mw6.6)

Abstract

The 2000 Tottori-ken Seibu earthquake (Mw6.6) occurred in Tottori prefecture, western Japan on October 6, 2000. We conducted aftershock observation and analyzed S-wave anisotropy using the aftershocks Mjma2.0 to 3.5 observed at two stations near the aftershock region. The fast S-waves are polarized to almost E-W direction, which corresponds to the P-axis direction of the mainshock. The delay time of the split S-waves ranges between 20 and 100 ms. The crack density inside and outside the aftershock area is estimated from the delay time. The distribution of crack density shows a strong spatial variation and depends on the ratio of the path length inside the aftershock region against the whole path length. Assuming a uniform distribution of anisotropy inside and outside the aftershock region, the crack densities inside and outside are 0.017 and 0.007, respectively. It thus seems probable that in the aftershock region the distribution of cracks is intensive and cracks are opened due to the presence of fluids in seismogenic layers. This considerable spatial variation of anisotropy between inside and outside the aftershock region suggests that the aftershock region may have different mechanical properties from the surrounding area.

References

  • Ben-Menahem, A. and S. J. Singh, Seismic Waves and Sources (2nd edition), 1102 pp., Dover, New York, 2000.

    Google Scholar 

  • Booth, D. C. and S. Crampin, Shear-wave polarizations on a curved wavefront at an isotropic free-surface, Geophys. J. Roy. Astr. Soc., 83, 31–45, 1985.

    Article  Google Scholar 

  • Bowman, J. R. and M. Ando, Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone, Geophys. J. Roy. Astr. Soc., 88, 25–41, 1987.

    Article  Google Scholar 

  • Buchbinder, G. G. R., Shear wave splitting and anisotropy from the aftershocks of the Nahanni Northwest Territories, earthquakes, J. Geophys. Res., 95, 4777–4785, 1990.

    Article  Google Scholar 

  • Cochran, E. S., J. E. Vidale, and Y. G. Li, Near-fault anisotropy following the Hector Mine earthquake, J. Geophys. Res., 108, 2436, doi:10.1029/2002JB002352, 2003.

    Article  Google Scholar 

  • Crampin, S., Seismic wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic, Geophys. J. Roy. Astr. Soc., 53, 467–496, 1978.

    Article  Google Scholar 

  • Crampin, S., The fracture criticality of crustal rocks, Geophys. J. Int., 118, 428–438, 1994.

    Article  Google Scholar 

  • Crampin, S., R. Evans, B. Üçer, M. Doyle, J. P. Davis, G. V. Yegorkina, and A. Miller, Observations of dilatancy-induced polarization anomalies and earthquake prediction, Nature, 286, 874–877, 1980.

    Article  Google Scholar 

  • Evans, R., Effects of the free surface on shear wavetrains, Geophys. J. Roy. Astr. Soc., 76, 165–172, 1984.

    Article  Google Scholar 

  • Fukuyama, E., W. L. Ellsworth, F. Waldhauser, and A. Kubo, Detailed fault structure of the 2000 western Tottori, Japan, earthquake sequence, Bull. Seism. Soc. Am., 93, 1468–1478, 2003.

    Article  Google Scholar 

  • Gledhill, K. R., Evidence for shallow and pervasive seismic anisotropy in the Wellington region, New Zealand, Geophys. Res., 96, 21503–21516, 1991.

    Article  Google Scholar 

  • Hickman, S., R. H. Sibson, and R. Bruhn, Introduction to special section: Mechanical involvement of fluids in faulting, J. Geophys. Res., 100, 12831–12840, 1995.

    Article  Google Scholar 

  • Hudson, J. A., Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. Roy. Astr. Soc., 64, 133–150, 1981.

    Article  Google Scholar 

  • Kaneshima, S., Origin of crustal anisotropy: Shear wave splitting studies in Japan, J. Geophys. Res., 95, 11121–11133, 1990.

    Article  Google Scholar 

  • Li, Y. G., Shear wave splitting observations and implications on stress regimes in the Los Angeles basin, California, J. Geophys. Res., 101, 13,947–13,961, 1996.

    Article  Google Scholar 

  • Li, Y. G., J. E. Vidale, K. Aki, F. Xu, and T. Burdette, Evidence of shallow fault zone strengthening after the 1992 M 7.5 Landers, California, earthquake, Science, 279, 217–219, 1998.

    Article  Google Scholar 

  • Mamada, Y. and H. Takenaka, Strong attenuation of shear waves in the focal region of the 1997 Northwestern Kagoshima earthquakes, Japan, Bull. Seism. Soc. Am., 94, 464–478, 2004.

    Article  Google Scholar 

  • Mizuno, T., K. Yomogida, H. Ito, and Y. Kuwahara, Spatial distribution of shear wave anisotropy in the crust of the southern Hyogo region by borehole observations, Geophys. J. Int., 147, 528–542, 2001.

    Article  Google Scholar 

  • Nakamura, T., H. Takenaka, A. Watanabe, Y. Fujii, and S. Suzuki, Aftershock observation in the focal region of the 2000 Western Tottori earthquake, Sci. Repts., Dept. Earth and Planet. Sci., Kyushu Univ., 21, 49–59, 2002 (in Japanese with English abstract).

    Google Scholar 

  • O’Connell, R. J. and B. Budiansky, Seismic velocities in dry and saturated cracked solids, J. Geophys. Res., 79, 5412–5426, 1974.

    Article  Google Scholar 

  • Ohmi, S. and K. Obara, Deep low-frequency earthquakes beneath the focal region of the Mw 6.7 2000 Western Tottori earthquake, Geophys. Res. Lett., 29, doi:10.1029/2001GL014469, 2002.

  • Ohmi, S., K. Watanabe, T. Shibutani, N. Hirano, and S. Nakao, The 2000 Western Tottori Earthquake—Seismic activity revealed by the regional seismic networks—, Earth Planets Space, 54, 819–830, 2002.

    Article  Google Scholar 

  • Oshiman, N., Conductivity structure beneath the western part of Japan, Earth Monthly, 38, 82–90, 2002 (in Japanese).

    Google Scholar 

  • Saiga, A., Y. Hiramatsu, T. Ooida, and K. Yamaoka, Spatial variation in the crustal anisotropy and its temporal variation associated with the moderate size earthquake in the Tokai region, central Japan, Geophys. J. Int., 154, 695–705, 2003.

    Article  Google Scholar 

  • Shih, X. R. and R. P. Meyer, Observation of shear wave splitting from natural events: South moat of Long Valley Caldera, California, June 29 to August 12, 1982, J. Geophys. Res., 95, 11179–11195, 1990.

    Article  Google Scholar 

  • Sibson, R. H., Implications of fault-valve behavior for rupture nucleation and recurrence, Tectonophysics, 211, 283–293, 1992.

    Article  Google Scholar 

  • Tadokoro, K. and M. Ando, Evidence for rapid fault healing derived from temporal changes in S wave splitting, Geophys. Res. Lett., 29, doi:10. 1029/2001GL013644, 2002.

  • Tadokoro, K., M. Ando, and Y. Umeda, S wave splitting in the aftershock region of the 1995 Hyogo-ken Nanbu earthquake, J. Geophys. Res., 104, 981–991, 1999.

    Article  Google Scholar 

  • Udias, A., Principles of Seismology, Cambridge University Press, Cambridge, 475 pp., 1999.

    Google Scholar 

  • Ueno, H., S. Hatakeyama, T. Aketagawa, J. Funasaki, and N. Hamada, Improvement of hypocenter determination procedures in the Japan Meteorological Agency, Quart. J. Seism., 65, 123–134, 2002 (in Japanese with English abstract).

    Google Scholar 

  • Umeda, Y., The 2000 western Tottori earthquake, Earth Planets Space, 54, 3–4, 2002.

    Article  Google Scholar 

  • Utsu, T., Seismology (3rd edition), Kyoritsu Shuppan, Tokyo, 376 pp., 2001 (in Japanese).

    Google Scholar 

  • Watanabe, A., H. Takenaka, Y. Fujii, and H. Fujiwara, Seismograph orientation at K-NET observatories (2): Oita Prefecture, Zisin, 53, 185–192, 2000 (in Japanese with English abstract).

    Google Scholar 

  • Zhang, Z. and S. Y. Schwartz, Seismic anisotropy in the shallow crust of the Loma Prieta segment of the San Andreas fault system, J. Geophys. Res., 99, 9651–9661, 1994.

    Article  Google Scholar 

  • Zhao, D. and T. Mizuno, Crack density and saturation rate in the 1995 Kobe earthquake region, Geophys. Res. Lett., 26, 3213–3216, 1999.

    Article  Google Scholar 

  • Zhao, D., H. Tani, and O. P. Mishra, Crustal heterogeneity in the 2000 western Tottori earthquake region: effect of fluids from slab dehydration, Phys. Earth Planet. Inter., 145, 161–177, 2004.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takeshi Nakamura.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakamura, T., Takenaka, H. & Suzuki, S. Strong S-wave anisotropy in the aftershock region of the 2000 Tottori-ken Seibu, Japan, earthquake (Mw6.6). Earth Planet Sp 57, 1055–1062 (2005). https://doi.org/10.1186/BF03351884

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351884

Key words

  • Anisotropy
  • S-wave splitting
  • cracks
  • aftershock region
  • Tottori-ken Seibu earthquake