Skip to main content

Volume 57 Supplement 12

Special Issue: Modelling the Earth’s Magnetic Field: the 10th Generation IGRF

New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005

Abstract

When deriving spherical harmonic models of the Earth’s magnetic field, low-degree external field contributions are traditionally considered by assuming that their expansion coefficient q 01 varies linearly with the Dst-index, while induced contributions are considered assuming a constant ratio Q1 of induced to external coefficients. A value of Q1 = 0.27 was found from Magsat data and has been used by several authors when deriving recent field models from Èrsted and CHAMP data. We describe a new approach that considers external and induced field based on a separation of Dst = Est + Ist into external (Est) and induced (Ist) parts using a 1D model of mantle conductivity. The temporal behavior of q 01 and of the corresponding induced coefficient are parameterized by Est and Ist, respectively. In addition, we account for baseline-instabilities of Dst by estimating a value of q 01 for each of the 67 months of Èrsted and CHAMP data that have been used. We discuss the advantage of this new parameterization of external and induced field for geomagnetic field modeling, and describe the derivation of candidate models for IGRF 2005.

References

  • Holme, R., Modelling of attitude error in vector magnetic data: application to Èrsted data, Earth Planets Space, 52, 1187–1197, 2000.

    Article  Google Scholar 

  • Holme, R. and J. Bloxham, The treatment of attitude errors in satellite geomagnetic data, Phys. Earth Planet. Int., 98, 221–233, 1996.

    Article  Google Scholar 

  • Holme, R., N. Olsen, M. Rother, and H. Lühr, CO2: A CHAMP magnetic field model, in First CHAMP Mission results for Gravity, Magnetic and Atmospheric Studies, edited by C. Reigber, H. Lühr, and P. Schwintzer, pp. 220–225, Springer Verlag, 2003.

    Chapter  Google Scholar 

  • Kivelson, M. G. and C. T. Russell, Introduction to Space Physics, Cambridge University Press, 1995.

    Google Scholar 

  • Langel, R. A. and R. H. Estes, Large-scale, near-Earth magnetic fields from external sources and the corresponding induced internal field, J. Geophys. Res., 90, 2487–2494, 1985a.

    Article  Google Scholar 

  • Langel, R. A. and R. H. Estes, The near-Earth magnetic field at 1980 determined from MAGSAT data, J. Geophys. Res., 90, 2495–2509, 1985b.

    Article  Google Scholar 

  • Langel, R. A. and W. J. Hinze, The Magnetic Field of the Earth’s Lithosphere: The Satellite Perspective, Cambridge University Press, 1998.

    Book  Google Scholar 

  • Langel, R. A., G. D. Mead, E. R. Lancaster, R. H. Estes, and E. B. Fabiano, Initial geomagnetic field model from Magsat vector data, Geophys. Res. Lett., 7, 793–796, 1980.

    Article  Google Scholar 

  • Lowes, F. J. and N. Olsen, A more realistic estimate of the variances and systematic errors in spherical harmonic geomagnetic field models, Geophys. J. Int., 157, 1027–1044, 2004.

    Article  Google Scholar 

  • Maus, S. and H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth, Geophys. J. Int., 162, 755–763, 2005.

    Article  Google Scholar 

  • Maus, S. and P. Weidelt, Separating the magnetospheric disturbance magnetic field into external and transient internal contributions using a 1D conductivity model of the Earth, Geophys. Res. Lett., 31, L12,614, doi:10.1029/2004GL020,232, 2004.

    Article  Google Scholar 

  • Maus, S., H. Lühr, G. Balasis, M. Rother, and M. Mandea, Introducing POMME, the POtsdam Magnetic Model of the Earth, in Earth Observation with CHAMP, Results from Three Years in Orbit, edited by C. Reigber, H. Lühr, P. Schwintzer, and J. Wickert, pp. 293–298, Springer Verlag, 2005a.

    Chapter  Google Scholar 

  • Maus, S., M. Rother, K. Hemant, H. Lühr, A. V. Kuvshinov, and N. Olsen, Earth’s crustal magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements, Geophys. J. Int., 2005b (submitted).

    Google Scholar 

  • Olsen, N., A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Èrsted data, Geophys. J. Int., 149, 454–462, 2002.

    Article  Google Scholar 

  • Olsen, N., New parameterization of external and induced fields in geomagnetic field modeling, Geophysical Research Abstracts, 6, 02,454, 2004.

    Google Scholar 

  • Olsen, N., T. J. Sabaka, and L. Tøffner-Clausen, Determination of the IGRF 2000 model, Earth Planets Space, 52, 1175–1182, 2000.

    Article  Google Scholar 

  • Olsen, N., F. Lowes, and T. J. Sabaka, Ionospheric and induced field leakage in geomagnetic field models, and derivation of candidate models for DGRF 1995 and DGRF 2000, Earth Planets Space, 57, this issue, 1191–1196, 2005.

    Article  Google Scholar 

  • Sabaka, T. J., N. Olsen, and M. Purucker, Extending comprehensive models of the Earth’s magnetic field with Èrsted and CHAMP data, Geophys. J. Int., 159, 521–547, doi: 10.1111/j.1365-246X.2004.02,421.x, 2004.

    Article  Google Scholar 

  • Schmucker, U., Magnetic and electric fields due to electromagnetic induction by external sources, in Landolt-Börnstein, New-Series, 5/2b, pp. 100–125, Springer-Verlag, Berlin-Heidelberg, 1985a.

    Google Scholar 

  • Schmucker, U., Electrical properties of the Earth’s interior, in Landolt- Börnstein, New-Series, 5/2b, pp. 370–397, Springer-Verlag, Berlin- Heidelberg, 1985b.

    Google Scholar 

  • Schmucker, U., Substitute conductors for electromagnetic response estimates, PAGEOPH, 125, 341–367, 1987.

    Article  Google Scholar 

  • Tsyganenko, N. A., Quantitative models of the magnetospheric magnetic field: methods and results, Space Sci. Rev., 54, 75–186, 1990.

    Article  Google Scholar 

  • Tsyganenko, N. A., A model of the near magnetosphere with a dawndusk asymmetry 1. Mathematical structure, J. Geophys. Res., 107, 12–1, 2002a.

    Google Scholar 

  • Tsyganenko, N. A., A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations, J. Geophys. Res., 107, 10–1, 2002b.

    Google Scholar 

  • Utada, H., T. Koyama, H. Shimizu, and A. D. Chave, A semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region, Geophys. Res. Lett., 30, 43–1, DOI 10.1029/2002GL016,092, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Olsen.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olsen, N., Sabaka, T.J. & Lowes, F. New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005. Earth Planet Sp 57, 1141–1149 (2005). https://doi.org/10.1186/BF03351897

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351897

Key words

  • Geomagnetic Reference Model
  • IGRF/DGRF
  • magnetospheric currents
  • induction
  • spherical harmonic analysis