Skip to content


  • Article
  • Open Access

NGDC/GFZ candidate models for the 10th generation International Geomagnetic Reference Field

Earth, Planets and Space201457:BF03351898

Received: 9 February 2005

Accepted: 5 July 2005

Published: 20 June 2014


Following the call for candidates for the 10th generation IGRF, we produced and submitted three main field and three secular variation candidate models. The candidates are derived from parent models which use a standard quadratic parameterisation in time of the internal Gauss coefficients. External magnetospheric fields are represented by combined parameterisations in Solar Magnetic (SM) and in Geocentric Solar Magnetospheric (GSM) coordinates. Apart from the daily and annual variations caused by these external fields, the model also accounts for induction by Earth rotation in a non-axial external field. The uncertainties of our candidates are estimated by comparing independent models from CHAMP and Èrsted data. The root mean square errors of our main field candidates, for the internal field to spherical harmonic degree 13, are estimated to be less than 8 nT at the Earth’s surface. Our secular variation candidates are estimated to have root mean square uncertainties of 12 nT per year. A hind-cast analysis of the geomagnetic field for earlier epochs shows that our secular acceleration estimates from post-2000 satellite data are inconsistent with pre-2000 acceleration in the field. This could confirm earlier reports of a jerk around 2000.0, with a genuine change in the secular acceleration.

Key words

  • Geomagnetism
  • field modeling
  • reference field
  • secular variation