Skip to main content

GPS/Acoustic seafloor geodetic observation: method of data analysis and its application

Abstract

We have been developing a system for detecting seafloor crustal movement by combining kinematic GPS and acoustic ranging techniques. A linear inversion method is adopted to determine the position of seafloor stations from coordinates of a moving survey vessel and measured travel times of acoustic waves in seawater. The positioning accuracy is substantially improved by estimating the temporal variation of the acoustic velocity structure. We apply our method to the ranging data acquired at the seafloor reference point, MYGI, located off Miyagi Prefecture, in northeast Japan, where a huge earthquake is expected to occur in the near future. A time series of horizontal coordinates of MYGI obtained from seven campaign observations for the period 2002–2005 exhibits a linear trend with a scattering rms of about 2 cm. A linear fit to the time series gives an intraplate crustal velocity of more than several centimeters per year towards the WNW, which implies strong interplate coupling around this region. The precision of each campaign solution was examined at MYGI and other seafloor reference points along the Nankai Trough through comparison of independent one-day subset solutions within the campaign. The resultant repeatability looks to be well-correlated with the temporal and spatial stability of the acoustic velocity structure in the seawater depending on the region as well as the season.

References

  • Altamimi, Z., P. Sillard, and C. Boucher, ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications, J. Geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561, 2002.

    Article  Google Scholar 

  • Asada, A. and T. Yabuki, Centimeter-level positioning on the seafloor, Proc. of the Japan Academy, 77, Ser. B, 7–12, 2001.

    Article  Google Scholar 

  • Chadwell, C. D., Shipboard towers for Global Positioning System antennas, Ocean Engineering, 30, 1467–1487, 2003.

    Article  Google Scholar 

  • Chadwell, C. D., F. N. Spiess, J. A. Hildebrand, L. E. Young, G. H. Purcell, and H. Dragert, Deep-sea geodesy: Monitoring the ocean floor, GPS World, 9, 44–55, 1998.

    Google Scholar 

  • Chadwell, C. D., F. N. Spiess, J. A. Hildebrand, and H. Dragert, Seafloor geodetic evidence of episodic spreading 25 km east of the Juan de Fuca Ridge, EOS. Trans. AGU, 83, Fall Meet. Suppl., Abst., T22A–1130, 2002.

    Google Scholar 

  • Colombo, O. L. and A. G. Evans, Precise, decimeter-level differential GPS over great distances at Sea and on Land, Proceedings ION GPS-98, Nashville, Tennessee, 1998.

    Google Scholar 

  • Colombo, O. L., A. G. Evans, M. I. Vigo-Aguiar, J. M. Ferrandiz, and J. J. Benjamin, Long-baseline (>¹000 km), sub-decimeter kinematic positioning of buoys at sea, with potential application to deep sea studies, Proc. of ION GPS2000, Salt Lake City, U.S.A., 2000.

    Google Scholar 

  • Colombo, O. L., A. G. Evans, M. Ando, K. Tadokoro, K. Sato, and T. Yamada, Speeding up the estimation of floated ambiguities for subdecimeter kinematic positioning at sea, Proceedings ION GPS-2001, Salt Lake City, Utah, 2001.

    Google Scholar 

  • Del Grosso, V. A., New equation for the speed of sound in natural water (with comparison to other equations), J. Acoust. Soc. Am., 56(4), 1084–1091, 1974.

    Article  Google Scholar 

  • DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 21, 2191–2194, 1994.

    Article  Google Scholar 

  • Fujita, M., Seafloor geodetic observation—GPS/acoustic combination technique, HydroInternational, 7, 41–43, 2003.

    Google Scholar 

  • Fujita, M., T. Ishikawa, M. Sato, M. Mochizuki, M. Katayama, S. Toyama, T. Yabuki, A. Asada, and O. L. Colombo, Seafloor geodetic observation along the major trenches around Japan—Focusing on results at off- Miyagi area, EOS Trans. AGU, 85(47), Fall Meet. Suppl., Abstract G41A-06, 2004a.

    Google Scholar 

  • Fujita, M., M. Sato, and T. Yabuki, Development of seafloor positioning software using inverse method, Techn. Rep. Hydrogr. Oceanogr., 22, 50–56, 2004b (in Japanese).

    Google Scholar 

  • Fukuda, Y., Precise determination of local gravity field both the satellite altimeter data and the surface gravity data, Bull. Ocean Res. Inst., Univ. Tokyo, 133 pp, 1990.

    Google Scholar 

  • Funakoshi, M., H. Fujimoto, A. Sweeney, A. Kuwano, R. Hino, S. Miura, and Y. Osada, GPS/Acoustic submarine positioning using a small buoy in the subduction zone off northeastern Japan, Abstr. Joint Meet. Earth Planet. Sci., J062–001, 2005.

    Google Scholar 

  • Gagnon, K., C. D. Chadwell, E. Norabuena, Measuring the onset of locking in the Peru-Chile trench with GPS and acoustic measurements, Nature, 434, 205–208, 2005.

    Article  Google Scholar 

  • Hatanaka, Y., T. Iizuka, M. Sawada, A. Yamagiwa, Y. Kikuta, J. M. Johnson, and C. Rocken, Improvement of the Analysis Strategy of GEONET, Bull. Geogr. Surv. Inst., 49, 11–37, 2003.

    Google Scholar 

  • Ishikawa, T. and M. Fujita, Inverse method and precision improvement for seafloor positioning, Rep. Hydrogr. Oceanogr. Res., 41, 27–34, 2005 (in Japanese with an English abstract).

    Google Scholar 

  • Jackson, D. D., The use of a priori data to resolve nonuniqueness in linear inversion, Geophys. J. Roy. Astr. Soc., 57, 137–157, 1979.

    Article  Google Scholar 

  • Kawai, H, Hydrography of the Kuroshio Extension, in Kuroshio—Its Physical Aspects, edited by H. Stommel and K. Yoshida, University of Tokyo Press, 517 pp., 1972.

    Google Scholar 

  • Matsumoto, K., T. Takanezawa, and M. Ooe, Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan, J. Oceanogr., 56, 567–581, 2000.

    Article  Google Scholar 

  • Matsu’ura, M., Bayesian estimation of hypocenter with origin time eliminated, J. Phys. Earth, 32, 469–483, 1984.

    Article  Google Scholar 

  • Miura, S., T. Sato, A. Hasegawa, Y. Suwa, K. Tachibana, and S. Yui, Strain concentration zone along the volcanic front derived by GPS observations in NE Japan arc, Earth Planets Space, 56, 1347–1355, 2004.

    Article  Google Scholar 

  • Mochizuki, M., M. Sato, M. Katayama, T. Yabuki, Z. Yoshida, and A. Asada, Construction of seafloor geodetic observation network around Japan, Recent Advances in Marine Science and Technology, 2002, 591–600, 2003.

    Google Scholar 

  • Mochizuki, M., M. Fujita, M. Sato, Z. Yoshida, M. Katayama, T. Yabuki, and A. Asada, Repeated trials of seafloor geodetic observation around Japan, Recent advances in marine science and technology, 2004, 11–18, 2005.

    Google Scholar 

  • Obana, K., H., Katao, and M. Ando, Seafloor positioning system with GPS-acoustic link for crustal dynamics observation—a preliminary result from experiments in the sea, Earth Planets Space, 52, 415–423, 2000.

    Article  Google Scholar 

  • Osada, Y., H. Fujimoto, S. Miura, A. Sweeney, T. Kanazawa, S. Nakao, S. Sakai, J. A. Hildebrand, and C. D. Chadwell, Estimation and correction for the effect of sound velocity variation on GPS/Acoustic seafloor positioning: An experiment off Hawaii Island, Earth Planets Space, 55, e17–e20, 2003.

    Article  Google Scholar 

  • Sagiya, T., Interplate coupling in the Tokai District, Central Japan, deduced from continuous GPS data, Geophys. Res. Lett., 26, 2315–2318, 1999.

    Article  Google Scholar 

  • Sato, M. and M. Fujita, Effects of sound velocity profiles in the seafloor geodetic observation, Techn. Rep. Hydrogr. Oceanogr., 22, 42–49, 2004 (in Japanese).

    Google Scholar 

  • Sengoku, A., A plate motion study using Ajisai SLR data, Earth Planets Space, 50, 611–627, 1998.

    Article  Google Scholar 

  • Spiess, F. N., Suboceanic geodetic measurements, IEEE Trans. Geosci. Remote Sens., 23, 502–510, 1985.

    Article  Google Scholar 

  • Spiess, F. N. and J. A. Hildebrand, Employing geodesy to study temporal variability at a mid-ocean ridge, EOS Trans. AGU, 76, 451, 455, 1995.

    Article  Google Scholar 

  • Spiess, F. N., C. D. Chadwell, J. A. Hildebrand, L. E. Young, G. H. Purcell, Jr., and H. Dragert, Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies, Phys. Earth. Planet. Inter., 108, 101–112, 1998.

    Article  Google Scholar 

  • Suwa, Y., S. Miura, A. Hasegawa, T. Sato, and K. Tachibana, Spatiotemporal change of interplate coupling in the Northeastern Japan subduction zone, J. Seismol. Soc. Jpn., 56, 471–484, 2004 (in Japanese with an English abstract).

    Google Scholar 

  • Tadokoro, K., R. Ikuta, M. Ando, T. Okuda, S. Sugimoto, K. Takatani, and K. Yada, Repeated observation of sea-floor deformation at Kumano Basin, Japan (2), Abstr. Joint Meet. Earth Planet. Sci., J062–007, 2005.

    Google Scholar 

  • Toyama, S., Analysis for acoustic data in sea bottom geodetic observation, Techn. Rep. Hydrogr. Oceanogr., 21, 67–72, 2003 (in Japanese).

    Google Scholar 

  • Wessel, P. and W. H. F. Smith, Free software helps map and display data, EOS Trans. AGU, 72, 441, 445–446, 1991.

    Article  Google Scholar 

  • Yada, K., R. Ikuta, M. Ando, T. Okuda, K. Tadokoro, M. Kuno, S. Sugimoto, and K. Takatani, Spatial variations in acoustic velocity at Kuroshio region for the accurate ocean-bottom positioning, EOS Trans. AGU, 85(47), Fall Meet. Suppl., Abstract G21A–0147, 2004.

    Google Scholar 

  • Yamada, T., M. Ando, K. Tadokoro, K. Sato, T. Okuda, and K. Oike, Error evaluation in acoustic positioning of a single transponder for seafloor crustal deformation measurements, Earth Planets Space, 54, 871–881, 2002.

    Article  Google Scholar 

  • Xu, P., M. Ando, and K. Tadokoro, Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques, Earth Planets Space, 57, 795–808, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Fujita.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Fujita, M., Ishikawa, T., Mochizuki, M. et al. GPS/Acoustic seafloor geodetic observation: method of data analysis and its application. Earth Planet Sp 58, 265–275 (2006). https://doi.org/10.1186/BF03351923

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351923

Key words

  • GPS/Acoustic
  • seafloor geodetic observation
  • linear inversion
  • Off Miyagi
  • intraplate deformation