Skip to main content

Geomagnetic effects of high-density plasma with southward magnetic field in the interplanetary coronal mass ejection observed on May 2–3, 1998

Abstract

This paper aims to clarify the effect of high-density plasma in interplanetary coronal mass ejection (ICME) observed during the May 2–3, 1998 geomagnetic storm. The examination is performed based on the estimation of Dst index, which is calculated with the observed solar wind parameters of the ICME. The estimated Dst index variation is compared with Dst index variation provided by the World Data Center for Geomagnetism, Kyoto (WDC, Kyoto). From this examination, we find that the trend of the estimated Dst is in good agreement with that of the provided Dst when the thresholds are taken into account for both the solar wind plasma density and the dawn-to-dusk solar wind electric field, as 30 #/cc and 0.49 mV/m, respectively. From the result, we can conclude that the effect of high-density plasma is important on the enhancement of geomagnetic storm as well as the effect of the other solar wind parameters, such as the interplanetary magnetic field (IMF) Bz and solar wind velocity. On the other hand, the solar source of the magnetic field of this ICME is examined. The magnetic field structure of the ICME is examined by fitting the flux rope model to the observed magnetic field and solar wind speed. The results are compared with the magnetic structure of the bases of coronal helmet streamers. From this comparison we can find that the magnetic structure of the interplanetary flux rope is in good agreement with that of the neutral line of the base of coronal helmet streamers. The result suggests that if we look for the causes of geomagnetic storm we should take into account both the plasma structure and the magnetic structure of the base of coronal helmet streamers.

References

  • Burlaga, L. F., Magnetic cloud and force-free fields with constant alpha, J. Geophys. Res., 93, 7217–7224, 1988.

    Article  Google Scholar 

  • Burlaga, L. F., E. Sittler, F. Mariani, and R. Schwenn, Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP8 observations, J. Geophys. Res., 86, 6673–6684, 1981.

    Article  Google Scholar 

  • Burlaga, L. F., L. Klein, N. R. Sheeley,Jr., D. J. Michels, R. A. Howard, M. J. Koomen, R. Schwenn, and H. Rosenbauer, A magnetic cloud and a coronal mass ejection, Geophys. Res. Lett., 9, 1317–1320, 1982.

    Article  Google Scholar 

  • Burlaga, L. F., R. M. Skoug, C. W. Smith, D. F. Webb, T. H. Zurbuchen, and A. Reinard, Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998–1999, J. Geophys. Res., 106, 20,957–20,977, 2001.

    Article  Google Scholar 

  • Burton, R. K., R. L. McPherron, and C. T. Russell, An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204–4214, 1975.

    Article  Google Scholar 

  • Crooker, N. U., Solar and Heliospheric geoeffective disturbances, J. Atmos. Solar-Terr. Phys., 62, 1071–1085, 2000.

    Article  Google Scholar 

  • Crooker, N. U., J. T. Gosling, and S. W. Kahler, Magnetic cloud at sector boundaries, J. Geophys. Res., 103, 301–306, 1998.

    Article  Google Scholar 

  • Farrugia, C. J., L. F. Burlaga, V. A. Osherovich, and R. P. Lepping, A comparative of dynamically expanding force-free, constant-alpha magnetic configurations with applications to magnetic clouds, in Solar Wind Seven, edited by E. Marsch and R. Schwenn, COSPAR, vol. 3, 711 pp, Pergamon, New York, 1992.

    Google Scholar 

  • Fenrich, F. R. and J. G. Luhmann, Geomagnetic response to magnetic clouds of different polarity, Geophys. Res. Lett., 25, 2999–3002, 1998.

    Article  Google Scholar 

  • Gosling, J. T., Coronal mass ejections and magnetic flux ropes in interplanetary space, in Physics of Magnetic flux ropes, Geophys. Monogr. Ser., vol. 58, edited by C. T. Russell, E. R. Priest, and L. C. Lee, 685 pp., AGU, Washington, D.C., 1990.

    Google Scholar 

  • Haimin, W., P. R. Goode, C. Denker, G. Yang, V. Yurchishin, N. Nitta, J. B. Gurman, C. St. Cyr, and A. G. Kosovichev, Comparison of the 1998 April 29 M6.8 and 1998 November 5 M8.4 flares, ApJ., 536, 971–981, 2000.

    Article  Google Scholar 

  • Hundhausen, A. J., Sizes and locations of coronal mass ejections: SMM observations from 1980 and 1984–1989, J. Geophys. Res., 98, 13,177–13,200, 1993.

    Article  Google Scholar 

  • Maltsev, Yu. P. and B. V. Rezhenov, Relation of the Dst index to soalr wind parameters, Int. J. Geomagn. Aeron., 4, 1–9, 2003.

    Google Scholar 

  • Marubashi, K., Interplanetary magnetic flux ropes and solar filaments, in Coronal Mass Ejections, Geophys. Monogr. Ser., vol. 99, edited by N. Crooker, J. A. Joselyn, and J. Feynman, 299 pp, AGU, Washington, D.C., 1997.

    Google Scholar 

  • Moon, Y.-J., J. Chae, H. Wang, G. S. Choe, and Y. D. Park, Impulsive variations of the magnetic helicity change rate associated with eruptive flares, ApJ., 580, 528–537, 2002.

    Article  Google Scholar 

  • Murayama, T., Coupling function between solar wind parameters and geomagnetic indices, Rev. Geophys. Space. Phys., 20, 623–629, 1982.

    Article  Google Scholar 

  • O’Brien T. P. and R. L. McPherron, An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707–7719, 2000.

    Article  Google Scholar 

  • Thompson, B. J., E. W. Cliver, N. Nitta, C. Delannee, and J.-P. Delaboudiniere, Coronal dimmings and energetic CMEs in April–May 1998, Geophys. Res. Lett., 27, 1431–1434, 2000.

    Article  Google Scholar 

  • Zhao, X. P. and J. T. Hoeksema, Effect of coronal mass ejections on structure of the heliospheric current sheet, J. Geophys. Res., 101, 4825–4834, 1996.

    Article  Google Scholar 

  • Zhao, X. P. and D. F. Webb, Source regions and storm effectiveness of frontside full halo coronal mass ejections, J. Geophys. Res., 108, SSH4–1–SSH–4–11, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruka Adachi.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adachi, H., Sakurai, T. & Marubashi, K. Geomagnetic effects of high-density plasma with southward magnetic field in the interplanetary coronal mass ejection observed on May 2–3, 1998. Earth Planet Sp 58, 315–322 (2006). https://doi.org/10.1186/BF03351927

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351927

Key words

  • Magnetic cloud
  • high-density plasma
  • geomagnetic storm