Skip to main content

Volume 58 Supplement 4

Special Issue: Swarm—The Earth’s Magnetic Field and Environment Explorers

Swarm: A constellation to study the Earth’s magnetic field

Abstract

The Swarm mission was selected as the 5th mission in ESA’s Earth Explorer Programme in 2004. The mission will provide the best ever survey of the geomagnetic field and its temporal evolution that will lead to new insights into the Earth system by improving our understanding of the Earth’s interior and its effect on Geospace, the vast region around the Earth where electrodynamic processes are influenced by the Earth’s magnetic field. Scheduled for launch in 2010, the mission will comprise a constellation of three satellites, with two spacecraft flying sideby- side at lower altitude (450 km initial altitude), thereby measuring the East-West gradient of the magnetic field, and the third one flying at higher altitude (530 km). High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the necessary observations that are required to separate and model the various sources of the geomagnetic field. This results in a unique “view” inside the Earth from space to study the composition and processes of its interior. It also allows analysing the Sun’s influence within the Earth system. In addition practical applications in many different areas, such as space weather, radiation hazards, navigation and resource management, will benefit from the Swarm concept.

References

  • Alexandrescu, M., D. Gibert, G. Hulot, J. L. Le Mouël, and G. Saracco, Worldwide wavelet analysis of geomagnetic jerks, J. Geophys. Res., 101, 21975–21994, 1996.

    Article  Google Scholar 

  • Amit, H. and P. Olson, Helical core flow from geomagnetic secular variation, Phys. Earth Planet Inter., 147, 1–25, 2004.

    Article  Google Scholar 

  • Bijwaard, H. and W. Spakman, Non-linear global P-wave tomography by iterated linearized inversion, Geophys. J. Int., 110, 251–266, 2000.

    Google Scholar 

  • Bloxham, J. and A. Jackson, Time-dependent mapping of the magnetic field at the core-mantle boundary, J. Geophys. Res., 97, 19537–19568, 1992.

    Article  Google Scholar 

  • Bloxham, J., S. Zatman, and M. Dumberry, The origin of geomagnetic jerks, Nature, 420, 65–68, 2002.

    Article  Google Scholar 

  • Constable, S. and C. Constable, Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity, Geochem. Geophys. Geosys., 5(1), Q01006 doi:10.1029/ 2003GC000634, 2004.

  • Dormy, E. and M. Mandea, Tracking geomagnetic impulses at the core-mantle boundary, Earth Planet. Sci. Lett., 237, 300–309, 2005.

    Article  Google Scholar 

  • Editors of Science, Areas to watch in 2003, “A sun-climate connection”, Science, 298, 2298, 2002.

    Article  Google Scholar 

  • ESA SP-1279-6, The Earth’s Magnetic Field and Environment Explorers, ESA Publication Division, ESTEC., Noordwijk, 2004. Technical and Programmatic Annex to ESA SP-1279-6, The Earth’s Magnetic Field and Environment Explorers, ESA Publication Division, ESTEC., Noordwijk, 2004.

  • Eymin, C. and G. Hulot, On core surface flows inferred from satellite magnetic data, Phys. Earth Planet. Int, 152, 200–220, 2005.

    Article  Google Scholar 

  • Finlay, C. and A. Jackson, Equatorially dominated magnetic field change at the surface of earth’s core, Science, 300, 2084–2086, 2003.

    Article  Google Scholar 

  • Fox Maule, C., M. Purucker, N. Olsen, and K. Mosegaard, Heat Flux Anomalies in Antarctica Revealed by Satellite Magnetic Data, Science, 309, 464–467, doi:10.1126/science.1106888, 2005.

    Article  Google Scholar 

  • Friis-Christensen E., H. Lühr, and G. Hulot: Swarm—a constellation to study the dynamics of the Earth’s magnetic field and its interaction with the Earth system, Proposal for ESA Earth Explorer Opportunity Missions, January 2002, ISSN 1602-527X, DSRI Report 1/2002, 2002.

    Google Scholar 

  • Holme, R., Electromagnetic core-mantle coupling III. Laterally varying mantle conductance, Phys. Earth Planet Inter, 117, 329–344, 2000.

    Article  Google Scholar 

  • Holme, R. and O. de Viron, Geomagnetic jerks and a high-resolution length-of-day profile for core studies, Geophys. J. Int., 160, 435–439, 2005.

    Article  Google Scholar 

  • Hulot, G. and A. Chulliat, On the possibility of quantifying diffusion and horizontal Lorentz forces at the Earth’s core surface, Phys. Earth Planet Inter., 135, 47–54, 2003.

    Article  Google Scholar 

  • Hulot, G., C. Eymin, B. Langlais, M. Mandea, and N. Olsen, Small-scale structure of the Geodynamo inferred from Oersted and Magsat satellite data, Nature, 416, 620–623, 2002.

    Article  Google Scholar 

  • Jackson, A., Time-dependency of tangentially geostrophic core surface motions, Phys. Earth Planet Inter., 103, 293-311, 1997.

    Article  Google Scholar 

  • Jackson, A., A. Jonkers, and M. Walker, Four centuries of geomagnetic secular variation from historical records, Phil. Trans. R. Soc. Lond., 358, 957–990, 2000.

    Article  Google Scholar 

  • Jault, D., Electromagnetic and topographic coupling, and LOD variations, in edited by C. A. Jones and K. Zhang (Eds), “Earth’s core and lower mantle”, The Fluid Mechanics of Astrophysics and Geophysics, Taylor and Francis, London, pp. 56–76, 2003.

    Google Scholar 

  • Kuvshinov, A., T. J. Sabaka, and N. Olsen, 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth’s mantle, Earth Planets Space, 58, this issue, 417–427, 2006.

    Article  Google Scholar 

  • Langel, R., G. Ousley, and J. Berbert, The Magsat Mission, Geophys. Res. Lett., 9, 243–245, 1982.

    Article  Google Scholar 

  • Le Huy, M., M. Mandea, J. L. Le Mouël, and A. Pais, Time evolution of the fluid at the top of the core. Geomagnetic jerks, Earth Planets Space, 52, 163–173, 2000.

    Article  Google Scholar 

  • Lesur, V., S. Macmillan, and A. Thomson, Deriving main field and secular variation models from synthetic Swarm satellite and observatory data, Earth Planets Space, 58, this issue, 409–416, 2006.

    Article  Google Scholar 

  • Liu, H. and H. Lühr, Strong disturbance of the upper thermosphere density due to magnetic storms: CHAMP observations, J. Geophys. Res., 110, A04301; doi:10.1029/2004JA010741, 2005.

    Google Scholar 

  • Liu, H., H. Lühr, V. Henize, and W. Köhler, Global distribution of the thermospheric total mass density derived from CHAMP, J. Geophys. Res., 110, A04301; doi:10.1029/2004JA010741, 2005.

    Google Scholar 

  • Lühr, H., M. Rother, S. Maus, W. Mai, and D. Cooke, The diamagnetic effect of the equatorial Appleton anomaly: Its characteristics and impact on geomagnetic field modelling, Geophys. Res. Lett., 30, 17, 1906, doi:10.1029/2003GL017407, 2003.

    Article  Google Scholar 

  • Lühr, H., M. Rother, W. Köhler, P. Ritter, and L. Grunwaldt, Thermospheric up-welling in the cusp region, evidence from CHAMP observations, Geophys. Res. Lett., 31, L06805, doi:10.1029/2003GL019314, 2004.

    Article  Google Scholar 

  • Mandea Alexandrescu, M., D. Gibert, J.-L. Le Mouël, G. Hulot, and G. Saracco, An estimate of average lower mantle conductivity by wavelet analysis of geomagnetic jerks, J. Geophys. Res, 104, 17735–17745, 1999.

    Article  Google Scholar 

  • Mandea, M., E. Bellanger, and J. L. Le Mouël, A geomagnetic jerk for the end of the 20th century?, Earth planet. Sci. Lett., 183, 369–373, 2000.

    Article  Google Scholar 

  • Manoj, C., A. Kuvshinov, S. Maus, and H. Lühr, Ocean circulation generated magnetic signals, Earth Planets Space, 58, this issue, 429–437, 2006.

    Article  Google Scholar 

  • Marsh, N. and H. Svensmark, Low cloud properties influenced by cosmic rays, Phys. Rev. Lett., 85, 5004–5007, 2000.

    Article  Google Scholar 

  • Maus, S. and H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction, Geophys. J. Int., doi:10:1111/j.1365-246X.2005.02691.x, 2005.

    Google Scholar 

  • Maus, S., H. Lühr, G. Balaris, M. Rother, and M. Mandea, Introducing POMME, the Potsdam Magnetic Model of the Earth, in Earth Observation with CHAMP, Results from Three Years in Orbit, edited by C. Reigberg, H. Lühr, P. Schwintzer, J. Wickert, Springer, Berlin, pp. 293–298, 2005.

    Chapter  Google Scholar 

  • Maus, S., M. Rother, K. Hemant, C. Stolle, H. Lühr, A. Kuvshinov, and N. Olsen, Earth’s crustal magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements, Geophys. J. Int., doi: 10.1111/j.1365-246X.2005.02833.x, 2006a.

    Google Scholar 

  • Maus, S., H. Lühr, and M. Purucker, Simulation of the high-degree litho-spheric field recovery for the Swarm constellation of satellites, Earth Planets Space, 58, this issue, 397–407, 2006b.

    Article  Google Scholar 

  • Moretto, T., S. Vennerstrøm, N. Olsen, L. Raststätter, and J. Raeder, Using global magnetospheric models for simulation and interpretation of Swarm external field measurements, Earth Planets Space, 58, this issue, 439–449, 2006.

    Article  Google Scholar 

  • Neubert, T., M. Mandea, G. Hulot, R. von Frese, F. Primdahl, J. L. Jørgensen, E. Friis-Christensen, P. Stauning, N. Olsen, and T. Risbo, Ørsted satellite captures high-precision geomagnetic field data, EOS Transactions, AGU, 82(7), 81–88, 2001.

    Article  Google Scholar 

  • Olsen, N., Induction studies with satellite data, Surveys in Geophysics, 20, 309–340, 1999.

    Article  Google Scholar 

  • Olsen, N., T. J. Sabaka, and F. Lowes, New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF, Earth Planets Space, 57, 1141–1149, 2005.

    Article  Google Scholar 

  • Olsen, N., H. Lühr, T. J. Sabaka, M. Mandea, M. Rother, L. Tøffner-Clausen, and S. Choi, CHAOS—A model of Earths magnetic field derived from CHAMP, Ørsted and SAC-C magnetic satellite data, Geophys. J. Int., doi: 10.1111/j.1365-246X.2005.(in press), 2006.

    Google Scholar 

  • Olsen, N., R. Haagmans, T. J. Sabaka, A. Kuvshinov, S. Maus, M. E. Purucker, M. Rother, V. Lesur, and M. Mandea, The Swarm End-to-End mission simulator study: A demonstration of separating the various contributions to Earth’s magnetic field using synthetic data, Earth Planets Space, 58, this issue, 359–370, 2006a.

    Article  Google Scholar 

  • Pais, A. and G. Hulot, Length of day decade variations, torsional oscillations and inner core superrotation: evidence from recovered core surface zonal flows, Phys. Earth Planet Inter, 118, 291–316, 2000.

    Article  Google Scholar 

  • Pais, M. A., O. Oliveira, and F. Nogueira, Nonuniqueness of inverted core-mantle boundary flows and deviations from tangential geostrophy, J. Geophys. Res, 109, B08105, doi:10.1029/2004JB003012, 2004.

    Google Scholar 

  • Purucker, M., B. Langlais, N. Olsen, G. Hulot, and M. Mandea, The southern edge of cratonic North America: Evidence from new satellite magnetometer observations, Geophys. Res. Lett., 29(15), ORS1, 2002a.

    Google Scholar 

  • Purucker, M., H. McCreadie, S. Vennerstroem, G. Hulot, N. Olsen, H. Luehr, and E. Garnero, Highlights from AGU’s virtual session on new magnetic field satellites, EOS, 83, 368, 2002b.

    Article  Google Scholar 

  • Reigber, C., H. Lühr, and P. Schwintzer, CHAMP mission status, Adv. Space Res., 30, 129–134, 2002.

    Article  Google Scholar 

  • Ritter, P. and H. Lühr, Curl-B technique applied to Swarm constellation for determining field-aligned currents, Earth Planets Space, 58, this issue, 463–476, 2006.

    Article  Google Scholar 

  • Sabaka, T. J. and N. Olsen, Enhancing comprehensive inversions using the Swarm constellation, Earth Planets Space, 58, this issue, 371–395, 2006.

    Article  Google Scholar 

  • Sabaka, T. J., N. Olsen, and M. Purucker, Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP, Geophys. J. Int., 159(2), 521–547, 2004.

    Article  Google Scholar 

  • Tyler, R. H., S. Maus, and H. Lühr, Satellite observations of magnetic fields due to ocean tidal flow, Science, 299, 239–241, 2003.

    Article  Google Scholar 

  • Vennerstrom, S., T. Moretto, L. Raststätter, and J. Raeder, Modeling and analysis of solar wind generated contributions to the near-Earth magnetic field, Earth Planets Space, 58, this issue, 451–461, 2006.

    Article  Google Scholar 

  • Yu, F. and R. P. Turco, From molecular clusters to nanoparticles: Role of ambient ionisation in tropospheric aerosol formation, J. Geophys. Res., 106, 4797–4814, 2001.

    Article  Google Scholar 

  • Zatman, S. and J. Bloxham, Torsional oscillations and the magnetic field within the Earth’s core, Nature, 388, 760–763, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Friis-Christensen.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Friis-Christensen, E., Lühr, H. & Hulot, G. Swarm: A constellation to study the Earth’s magnetic field. Earth Planet Sp 58, 351–358 (2006). https://doi.org/10.1186/BF03351933

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351933

Key words