Skip to main content

Volume 58 Supplement 4

Special Issue: Swarm—The Earth’s Magnetic Field and Environment Explorers

3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth’s mantle

Abstract

An approach is presented to detect deep-seated regional conductivity anomalies by analysis of magnetic observations taken by low-Earth-orbiting satellites. The approach deals with recovery of C-responses on a regular grid and starts with a determination of time series of external and internal coefficients of the magnetic potential. From the coefficients, time series of the magnetic vertical component and of the horizontal divergence of the horizontal components are synthesized on the grid and the C-responses are determined by means of signal processing of the corresponding time series. For validation of the approach, 3 years of realistic synthetic data at simulated orbits of the forthcoming Swarm constellation of 3 satellites have been used. To obtain the synthetic data for a given 3-D conductivity Earth’s model a time-domain scheme has been applied which relies on a Fourier transformation of the inducing field, and on a frequency domain forward modelling. The conductivity model consists of a thin surface layer of realistic conductance and a 3-D mantle that incorporates a hypothetic deep regional anomaly beneath the Pacific Ocean plate. To establish the ability of the approach to capture the geometry of the mantle heterogeneities used in the forward approach, numerical experiments have been undertaken using various satellite combinations, sampling periods of the resulting time series, and numbers of internal coefficients. The possibility of the approach to map anomalies in the mantle using satellite data that contain contributions from the core and lithosphere, from the magnetosphere and ionosphere (and their Earth-induced counterparts), as well as payload noise has been investigated. The model studies have shown that C-responses obtained on a regular grid might be used to map regional deep-seated conductivity anomalies. Moreover, it has been demonstrated that these C-responses are successfully recovered from magnetic data collected by the proposed Swarm constellation of 3 satellites.

References

  • Bijwaard, H. and W. Spakman, Non-linear global P-wave tomography by iterated linearized inversion, Geophys. J. Int., 110, 251–266, 2000.

    Google Scholar 

  • Constable, S. and C. Constable, Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity, Geochemistry, Geophysics, Geosystems, 5, doi:10.1029/2003GC000,634, 2004.

  • Constable, S. and G. Heinson, Hawaiian hot-spot swell structure from seafloor MT sounding, Tectonophysics, 389, 111–124, 2004.

    Article  Google Scholar 

  • Deschamps, F., J. Trampert, and R. Snieder, Anomalies of temperature and iron in the uppermost mantle inferred from gravity data and tomo-graphic models, Phys. Earth Planet. Int., 129, 245–264, 2002.

    Article  Google Scholar 

  • Didwall, E. M., The electrical conductivity of the upper mantle as estimated from satellite magnetic field data, J. Geophys. Res., 89, 537–542, 1984.

    Article  Google Scholar 

  • Egbert, G. D. and J. R. Booker, Very long period magnetotellurics at Tucson observatory: implication for mantle conductivity, J. Geophys. Res., 97, 15,099–15,112, 1992.

    Article  Google Scholar 

  • Everett, M. and Z. Martinec, Spatiotemporal response of a conducting sphere under simulated geomagnetic storm conditions, Phys. Earth Planet. Int., 138, 163–181, 2003.

    Article  Google Scholar 

  • Everett, M., S. Constable, and C. Constable, Effects of near-surface conductance on global satellite induction responses, Geophys. J. Int., 153, 277–286, 2003.

    Article  Google Scholar 

  • Fujii, I. and H. Utada, On geoelectric potential variations over a planetary scale, Memoirs of the Kakioka Magnetic Observatory, 29, 1–81, 2000.

    Google Scholar 

  • Fukao, Y., T. Koyama, M. Obayashi, and H. Utada, Trans-Pacific temperature field in the mantle transition region derived from seismic and electromagnetic tomography, Earth and Planetary Science Letters, 217, 425–434, 2004.

    Article  Google Scholar 

  • Grammatica, N. and P. Tarits, Contribution at satellite altitude of electro-magnetically induced anomalies arising from a three-dimensional het-erogeneously conducting earth, using Sq as an inducing source field, Geophys. J. Int., 151, 913–923, 2002.

    Article  Google Scholar 

  • Kuvshinov, A. and N. Olsen, Mantle conductivity obtained by 3-D inversion of magnetic satellite data—an approach and its validation, Geophysical Research Abstracts, 7, 08,607, 2005a.

    Google Scholar 

  • Kuvshinov, A. and N. Olsen, Modelling the ocean effect of geomagnetic storms at ground and satellite altitude, in Earth Observation with CHAMP. Results from Three Years in Orbit, edited by C. Reigber, H. Lühr, P. Schwintzer, and J. Wickert, pp. 353–359, Springer Verlag, 2005b.

    Chapter  Google Scholar 

  • Kuvshinov, A., D. Avdeev, and O. Pankratov, On deep sounding of a nonhomogeneous earth using satellite magnetic measurements, Physics of the Solid Earth, 34, 326–331, 1998.

    Google Scholar 

  • Kuvshinov, A. V., D. B. Avdeev, O. V. Pankratov, S. A. Golyshev, and N. Olsen, Modelling electromagnetic fields in 3D spherical Earth using fast integral equation approach, in 3D Electromagnetics, edited by M. S. Zhdanov and P. E. Wannamaker, chap. 3, pp. 43–54, Elsevier, Holland, 2002.

    Google Scholar 

  • Kuvshinov, A. V., H. Utada, D. Avdeev, and T. Koyama, 3-D modelling and analysis of Dst C-responses in the North Pacific ocean region, revisited, Geophys. J. Int., 160, 505–526, 2005.

    Article  Google Scholar 

  • Laske, G. and G. Masters, A global digital map of sediment thickness, EOS Trans. AGU, 78, F483, 1997.

    Google Scholar 

  • Li, X. D. and B. Romanowicz, Global mantle shear velocity model developed using nod]ar asymptotic coupling theory, J. Geophys. Res., 101, 22,245–22,272, 1995.

    Article  Google Scholar 

  • Lizarralde, D., A. Chave, G. Hirth, and A. Schultz, Long period magne-totelluric study using Havaii-to-California submarine cable data: implications for mantle conductivity, J. Geophys. Res., 100, 17,873–17,884, 1995.

    Google Scholar 

  • Martinec, Z. and H. McCreadie, Electromagnetic induction modelling based on satellite magnetic vector data, Geophys. J. Int., 155, 33–43, 2004.

    Article  Google Scholar 

  • McCreadie, H. and Z. Martinec, Geomagnetic induction modelling based on CHAMP magnetic vector data, in Earth Observation with CHAMP. Results from Three Years in Orbit, edited by C. Reigber, H. Lühr, P. Schwintzer, and J. Wickert, pp. 335–341, Springer Verlag, 2005.

    Chapter  Google Scholar 

  • Neal, S. L., R. L. Mackie, J. C. Larsen, and A. Schultz, Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean, J. Geophys. Res., 105, 8229–8242, 2000.

    Article  Google Scholar 

  • Olsen, N., Estimation of C-responses (3 h to 720 h) and the electrical conductivity of the mantle beneath Europe, Geophys. J. Int., 133, 298–308, 1998.

    Article  Google Scholar 

  • Olsen, N., Induction studies with satellite data, Surveys in Geophysics, 20, 309–340, 1999.

    Article  Google Scholar 

  • Olsen, N. and A. Kuvshinov, Modelling the ocean effect of geomagnetic storms, Earth Planets Space, 56, 525–530, 2004.

    Article  Google Scholar 

  • Olsen, N., S. Vennerstrøm, and E. Friis-Christensen, Monitoring magneto-spheric contributions using ground-based and satellite magnetic data, in First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, edited by C. Reigber, H. Lühr, and P. Schwintzer, pp. 245–250, Springer Verlag, 2002.

    Google Scholar 

  • Olsen, N., R. Haagmans, T. J. Sabaka, A. Kuvshinov, S. Maus, M. E. Purucker, M. Rother, V. Lesur, and M. Mandea, The Swarm End-to-End mission simulator study: A demonstration of separating the various contributions to Earth’s magnetic field using synthetic data, Earth Planets Space, 58, this issue, 359–370, 2006.

    Article  Google Scholar 

  • Oraevsky, V. N., N. M. Rotanova, T. N. Bondar, D. Y. Abramova, and V. Y. Semenov, On the radial geoelectrical structure of the mid-mantle from magnetovariational sounding using MAGSAT data, J. Geomag. Geoelectr., 45, 1415–1423, 1993.

    Article  Google Scholar 

  • Riedel, K. and A. Sidorenko, Minimum bias multiple taper spectral estimation, IEEE Trans. Signal Process., 43, 188–195, 1995.

    Article  Google Scholar 

  • Ritsema, J., H. J. van Heijst, and J. H. Woodhouse, Complex shear velocity structure imaged beneath Africa and Iceland, Science, 286, 1925–1928, 1999.

    Article  Google Scholar 

  • Roberts, R. G., The long-period electromagnetic response of the earth, Geophys. J. R. astr. Soc., 78, 547–572, 1984.

    Article  Google Scholar 

  • Sabaka, T. J. and N. Olsen, Enhancing comprehensive inversions using the Swarm constellation, Earth Planets Space, 58, this issue, 371–395, 2006.

    Article  Google Scholar 

  • Santos, F., A. Soares, H. Rodriges, R. Luzio, and N. Palshin, Lithosphere conductivity structure using the CAM-1 (Lisbon-Madeira) submarine cable, Geophys. J. Int., 155, 591–600, 2003.

    Article  Google Scholar 

  • Schmucker, U., Magnetic and electric fields due to electromagnetic induction by external sources, in Landolt-Börnstein, New-Series, 5/2b, pp. 100–125, Springer-Verlag, Berlin-Heidelberg, 1985.

    Google Scholar 

  • Schultz, A., On the vertical gradient and associated heterogeneity in mantle electrical conductivity, Phys. Earth Planet. Interiors, 64, 68–86, 1990.

    Article  Google Scholar 

  • Schultz, A. and J. C. Larsen, On the electrical conductivity of the mid-mantle—I. Calculation of equivalent scalar magnetotelluric response functions, Geophys. J. R. astr. Soc., 88, 733–761, 1987.

    Article  Google Scholar 

  • Schultz, A., R. Kurtz, A. Chave, and A. Jones, Conductivity discontinuities in the upper mantle beneath a stable craton, Geophys. Res. Lett., 20, 2941–2944, 1993.

    Article  Google Scholar 

  • Semenov, V., W. Jozwiak, and J. Pek, Deep electromagnetic soundings conducted in Trans-European Suture Zone, EOS Trans. AGU, 84, 581, 2003.

    Article  Google Scholar 

  • Su, W. J. and A. M. Dziewonski, Simultaneous inversions for 3-D variations in shear and bulk velocity in the mantle, Phys. Earth Planet. Int., 100, 135–156, 1997.

    Article  Google Scholar 

  • Tarits, P. and N. Grammatica, Electromagnetic induction effects by the solar quiet magnetic field at satellite altitude, Geophys. Res. Lett., 27, 4009–4012, 2000.

    Article  Google Scholar 

  • Utada, H., T. Koyama, H. Shimizu, and A. D. Chave, A semi-global reference model for electrical conductivity in the mid-mantle beneath the North Pacific region, Geophys. Res. Lett., 30, doi:10.1029/2002GL016,092, 2003.

  • Velimsky, J. and M. Everett, Electromagnetic induction by Sq ionospheric currents in a heterogeneous Earth: Modeling using ground-based and satellite measurements, in Earth Observation with CHAMP. Results from Three Years in Orbit, edited by C. Reigber, H. Lühr, P. Schwintzer, and J. Wickert, pp. 341–347, Springer Verlag, 2005.

    Chapter  Google Scholar 

  • Velimsky, J., M. E. Everett, and Z. Martinec, The transient Dst electromagnetic induction signal at satellite altitudes for a realistic 3-D electrical conductivity in the crust and mantle, Geophys. Res. Lett., 30, doi:10.1029/2002GL016,671, 2003.

  • Velimsky, J., Z. Martinec, and M. Everett, Electrical conductivity in the Earth’s mantle inferred from CHAMP satellite measurements—I. Data processing and 1-D inversion, Geophys. J. Int., 2006 (in press).

    Google Scholar 

  • Woodhouse, J. and J. Trampert, Global upper mantle structure inferred from surface wave and body wave data, EOS Trans., p. F422, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Kuvshinov.

Additional information

On leave from Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, Russian Academy of Sciences, 142190, Troitsk, Moscow region, Russia.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Kuvshinov, A., Sabaka, T. & Olsen, N. 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth’s mantle. Earth Planet Sp 58, 417–427 (2006). https://doi.org/10.1186/BF03351938

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351938

Key words

  • Satellite magnetic observations
  • 3-D electromagnetic induction
  • C-responses
  • mantle conductivity anomalies