Skip to main content

Volume 58 Supplement 4

Special Issue: Swarm—The Earth’s Magnetic Field and Environment Explorers

Ocean circulation generated magnetic signals

Abstract

Conducting ocean water, as it flows through the Earth’s magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification of ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume an Earth’s conductivity model with a surface thin shell of variable conductance with a realistic 1D mantle underneath. Simulations using both models predict an amplitude range of ±2 nT at Swarm altitude (430 km). However at sea level, the higher resolution simulation predicts a higher strength of the magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals.

References

  • Chave, A., On the theory of electromagnetic induction in the earth by ocean currents, J. Geophys. Res., 88, 3531–3542, 1983.

    Article  Google Scholar 

  • Everett, M., S. Constable, and C. Constable, Effects of near-surface conductance on global satellite induction responses, Geophys. J. Int., 153, 277–286, 2003.

    Article  Google Scholar 

  • Faraday, M., Experimental researches in electricity (Bakerian lecture), Philos. Trans. R. Soc. London, 122, 163–177, 1832.

    Article  Google Scholar 

  • Flosadóttir, A. H., J. C. Larsen, and J. T. Smith, Motional induction in North Atlantic circulation models, J. Geophys. Res., 102, 10,353–10,372, 1997a.

    Article  Google Scholar 

  • Flosadóttir, A. H., J. C. Larsen, and J. T. Smith, The relation of seafloor voltages to ocean transports in North Atlantic circulation models: Model results and practical considerations for transport monitoring, J. Physical Oceanography, 27, 1547–1565, 1997b.

    Article  Google Scholar 

  • Fofonoff, N. P., Physical properties of seawater: A new salinity scale and equation of state for seawater, J. Geophys. Res., 90, 3322–3342, 1985.

    Google Scholar 

  • Junge, A., The telluric field in northern Germany induced by tidal motion in North Sea, Geophys. J. Int., 95, 523–533, 1988.

    Article  Google Scholar 

  • Kuvshinov, N. and N. Olsen, 3-D modelling of the magnetic fields due to ocean tidal flow, in Earth Observation with CHAMP. Results from Three Years in Orbit, edited by C. Reigber, H. Lühr, P. Schwintzer, and J. Wickert, pp. 359–366, Springer Verlag, 2005.

    Chapter  Google Scholar 

  • Kuvshinov, A. V., D. B. Avdeev, O. V. Pankratov, S. A. Golyshev, and N. Olsen, Modelling electromagnetic fields in 3D spherical Earth using fast integral equation approach, in 3D Electromagnetics, edited by M. S. Zhdanov, and P. E. Wannamaker, chap. 3, pp. 43–54, Elsevier, Holland, 2002.

    Google Scholar 

  • Kuvshinov, A. V., H. Utada, D. Avdeev, and T. Koyama, 3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited, Geophys. J. Int., 160, 505–526, 2005.

    Article  Google Scholar 

  • Larsen, J. C., Electric and magnetic fields induced by deep see tides, Geophys. J. R. Astr. Soc., 16, 47–70, 1968.

    Article  Google Scholar 

  • Larsen, J. C. and T. Sanford, Florida Current volume transport from voltage measurements, Science, 227, 302–304, 1985.

    Article  Google Scholar 

  • Laske, G. and G. Masters, A global digital map of sediment thickness, EOS Trans. AGU, 78, F483, 1997.

    Google Scholar 

  • Lilley, F., A. White, G. Heinson, and K. Procko, Seeking a seafloor magnetic signal from the Antarctic Circumpolar Current, Geophys. J. Int., 157, 175–186, 2004a.

    Article  Google Scholar 

  • Lilley, F., A. Hitchman, P. R. Milligan, and T. Pedersen, Sea-surface observations of the magnetic signals of ocean swells, Geophys. J. Int., 159, 565–572, 2004b.

    Article  Google Scholar 

  • Marshall, J., A. Adcroft, C. Hill, Perelman, and C. Heisey, A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753–5766, 1997.

    Article  Google Scholar 

  • Maus, S. and A. Kuvshinov, Ocean tidal signals in observatory and satellite magnetic measurements, Geophyc. Res. Lett, 31, doi:10.1029/2004GC000, 634, 2004.

    Google Scholar 

  • Maus, S., M. Rother, K. Hemant, H. Lühr, A. Kuvshinov, and N. Olsen, Earth’s crustal magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements, Geophys. J. Int., 164, 319–330, doi:10.1111/j.1365-246X.2005.02833.x, 2006.

    Article  Google Scholar 

  • Palshin, N., L. Vanyan, I. Yegorov, and K. Lebedev, Electric field induced by the glodal ocean circulation, Physics Solid Earth, 35, 1028–1035, 1999.

    Google Scholar 

  • Pankratov, O., A. Kuvshinov, and D. Avdeev, High-performance three-dimensional electromagnetic modeling using modified Neumann series. Anisotropic case, J. Geomag. Geoelectr., 49, 1541–1547, 1997.

    Article  Google Scholar 

  • Sanford, T. B., Motionally induced electric and magnetic fields in the sea, J. Geophys. Res., 76, 3476–3492, 1971.

    Article  Google Scholar 

  • Schmucker, U., Electrical properties of the Earth’s interior, in Landolt-Börnstein, New-Series, 5/2b, pp. 370–397, Springer-Verlag, Berlin-Heidelberg, 1985.

    Google Scholar 

  • Singer, B., Method for solution of Maxwell’s equations in non-uniform media, Geophys. J. Int., 120, 590–598, 1995.

    Article  Google Scholar 

  • Stephenson, D. and K. Bryan, Large-scale electric and magnetic fields generated by the oceans, J. Geophys. Res., 97, 15,467–15,480, 1992.

    Article  Google Scholar 

  • Tyler, R. H., Theoretical and Numerical Results on the Magnetic Fields Generated by Ocean Flow, EGS annual conference, 2002.

    Google Scholar 

  • Tyler, R. H., Exploring and exploiting the magnetic fields generated by ocean flow, Geophysical Research Abstracts, 5, 2003.

  • Tyler, R., L. A. Mysak, and J. Oberhuber, Electromagnetic fields generated by a 3-D global ocean circulation, J. Geophys. Res., 102, 5531–5551, 1997.

    Article  Google Scholar 

  • Tyler, R. H., T. B. Sanford, and J. M. Oberhuber, Magnetic Fields Generated by Ocean Flow, AGU Fall Conference, 1998.

    Google Scholar 

  • Tyler, R., J. Oberhuber, and T. Sanford, The potential for using ocean generated electromagnetic field to remotely sense ocean variability, Phys. Chem. Earth (A), 24, 429–432, 1999.

    Article  Google Scholar 

  • Tyler, R., S. Maus, and H. Lühr, Satellite observations of magnetic fields due to ocean tidal flow, Science, 299, 239–240, 2003.

    Article  Google Scholar 

  • Vivier, F., E. Maier-Reimer, and R. H. Tyler, Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow?, Geophys. Res. Lett., 31, doi:10.1029/2004GL019, 804, 2004.

    Article  Google Scholar 

  • Webb, D. J., B. A. de Cuevas, and A. C. Coward, The first main run of the OCCAM global ocean model, Internal Document 34, Southampton Oceanography Centre, U.K., 1998.

    Google Scholar 

  • Zhang, S.-L., GPBi-CG: generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems, SIAM J. Sci. Comput., 18, 537–551, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Manoj.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Manoj, C., Kuvshinov, A., Maus, S. et al. Ocean circulation generated magnetic signals. Earth Planet Sp 58, 429–437 (2006). https://doi.org/10.1186/BF03351939

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351939

Key words