Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Global lithospheric magnetic field modelling by successive regional analysis

Abstract

Present lithospheric field models, like the MF4 and CM4, are produced by least squares estimation using spherical harmonic basis functions with global support. Accounting for the different properties of magnetic data at low and high latitudes, a method that can take regional differences into account is proposed. Using four years of CHAMP satellite data, a detailed lithospheric magnetic field snapshot is obtained at 400 km altitude over the entire sphere by stitching together a dense coverage of regional models. The individual forward models computed on a quasi-regular grid over the Earth are then transformed to spherical harmonics by direct integration. Despite the stitching procedure, the long wavelength lithospheric features are correctly reproduced and small scale features are well resolved. Without regularization, the resulting model is stable to spherical harmonic degree 56. In addition to accounting for regionally varying noise levels, the proposed technique is also well suited to deal with incomplete data coverage issues when combining satellite with near surface data. The method could therefore make an important contribution to one of the main goals of the Swarm mission: to close the spectral gap between satellite and near-surface magnetic surveys.

References

  1. Cain, J. C., Z. Wang, C. Kluth, and D. R. Schmitz, Derivation of a geomagnetic model to n = 63, Geophys. J. Int., 97, 431–441, 1989.

    Article  Google Scholar 

  2. Driscoll, J. R. and D. M. Healy, Computing fourier transforms and convolution on the 2-sphere, Adv. Appl. Maths., 15, 202–250, 1994.

    Article  Google Scholar 

  3. Dufour, H. M., A proposal for a unique quasi-regular grid on a sphere, Manuscripta Geodatica, 16, 267–273, 1991.

    Google Scholar 

  4. ESA, Swarm—the Earth’s magnetic field and environment explorers, Tech. Report, SP-1279(6), European Spatial Agency, http://www.esa.int/ esaLP/LPswarm.html, 2004.

    Google Scholar 

  5. Fejér, L., Sur les singularités de la série de fourier des fonctions continues, Annales Scientifiques de l’E.N.S., 28, 63–104, 1911.

    Google Scholar 

  6. Goodwin, A. M., Precambrian Geology: The Dynamic Evolution of the Continental Crust, Academic Press, San Diego, 1991.

    Google Scholar 

  7. Haines, G. V., Spherical cap harmonic analysis, J. Geophys. Res., 90, 2583–2591, 1985.

    Article  Google Scholar 

  8. Hemant, K., Modeling and interpretation of global lithospheric magnetic anomalies, PhD thesis, Freien Universität, Berlin, 2003.

    Google Scholar 

  9. Langel, R. A. and W. J. Hinze, The Magnetic Field of the Earth’s Lithosphere, Cambridge University Press, 1998.

    Google Scholar 

  10. Lesur, V. and D. Gubbins, Evaluation of fast spherical transforms for geophysical applications, Geophys. J. Int., 139, 547–555, 1999.

    Article  Google Scholar 

  11. Lowes, F. J., Mean-square values on sphere of spherical harmonic vector fields, J. Geophys. Res., 71, 2179, 1966.

    Article  Google Scholar 

  12. Maus, S., H. Lühr, G. Balasis, M. Rother, and M. Mandea, Introducing POMME, the POtsdam Magnetic Model of the Earth, http://www.gfzpotsdam.de/pb2/pb23/index.html, 2004.

    Google Scholar 

  13. Maus, S., M. Rother, K. Hemant, C. Stolle, H. Lühr, A. Kuvshinov, and N. Olsen, Earth’s crustal magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements, Geophys. J. Int., 164(2), 319–330, 2006.

    Article  Google Scholar 

  14. Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, volume 45 of International Geophysics Series, Academic Press, New York, second edition, 1989.

    Google Scholar 

  15. Olsen, N., A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Èrsted data, Geophys. J. Int., 149, 454–462, 2002.

    Article  Google Scholar 

  16. Press, W. H., S. A. Teulolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipies in C, Cambridge Unviversity Press, New York, second edition, 1992.

    Google Scholar 

  17. Sabaka, T. J., N. Olsen, and M. Purucker, Extending comprehensive models of the Earth’s magnetic field with Èrsted and CHAMP data, Geophys. J. Int., 159, 521–547, 2004.

    Article  Google Scholar 

  18. Saff, E. B. and A. B. J. Kuijlaars, Distributing many points on a sphere, The Mathematical Intelligencer, 19(1), 5–11, 1997.

    Article  Google Scholar 

  19. Thébault, E., Modélisation régionale du champ magnétique terrestre, PhD thesis, Université Louis Pasteur, Strasbourg, 2003.

    Google Scholar 

  20. Thébault, E., J. J. Schott, and M. Mandea, Revised spherical cap harmonic analysis (R-SCHA): validation and properties, J. Geophys. Res., 111, B01102, 2006.

    Google Scholar 

  21. Tyler, R., S. Maus, and H. Lühr, Satellite observations of magnetic fields du to ocean tidal flow, Science, 299, 239–241, 2003.

    Article  Google Scholar 

  22. Walker, J. S., Fourier Analysis, Oxford University Press, 1988.

    Google Scholar 

  23. Wessel, P. and W. H. F. Smith, Free software help maps and display data, EOS Trans., 72, 441, 1991.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Thébault.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thébault, E. Global lithospheric magnetic field modelling by successive regional analysis. Earth Planet Sp 58, 485–495 (2006). https://doi.org/10.1186/BF03351944

Download citation

Key words

  • Regional modelling
  • Revised Spherical Cap Harmonic Analysis
  • lithospheric field
  • geomagnetism