Skip to main content

Determining dislocation Love numbers using satellite gravity mission observations


This paper presents a new approach to calculate dislocation Love numbers using observations of a satellite gravity mission (e.g. GRACE). The necessary condition is that the co-seismic potential change be sufficiently large to be detected by the gravity mission. Co-seismic deformations for each spherical harmonic degree n are decoupled. Therefore, dislocation Love numbers of degree n can be determined independently. The determinable maximum harmonic degree n depends on the seismic size, source type, magnitude, and the accuracy of a satellite gravity mission. For an arbitrary seismic source, all four types of dislocation Love numbers can be determined using data from only one seismic event because all deformation components are involved together. Only the concerned dislocation Love numbers can be computed for any one of the four types of sources. To prove the validity of the method proposed in this study, a simulation test is carried out by considering a similar case to the 2004 Sumatra earthquake (Mw 9.1). Results show that the method works well and guarantee the accuracy.


  • Ammon, C. J., J. Chen, H. Thio, et al., Rupture process of the 2004 Sumatra-Andaman Earthquake, Science, 308, 1133–1139, 2005.

    Article  Google Scholar 

  • Chao, B. F., Geodesy is not just for static measurements any more, Eos, Transactions, American Geophysical Union, 84, 145–156, 2003.

    Article  Google Scholar 

  • Chao, B. F. and R. S. Gross, Changes in the Earth’s rotation and low-degree gravitational field induced by earthquakes, Geophys. J. R. Astr. Soc., 91, 569–596, 1987.

    Article  Google Scholar 

  • Chao, B. F., V. Dehant, R. S. Gross, R. D. Ray, D. A. Salstein, M. M. Watkins, and C. R. Wilson, Space geodesy monitors mass transports in global geophysical fluids, Eos, Transactions, American Geophysical Union, 81, 247–250, 2000.

    Article  Google Scholar 

  • Dziewonski, A. M. and D. L. Anderson, Preliminary Reference Earth Model, Phys. Earth Planet. Inter., 25, 297–356, 1981.

    Article  Google Scholar 

  • Gilbert, F. and A. M. Dziewonski, An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra, Phil. Trans. R. Soc. London A, 278, 187–269, 1975.

    Article  Google Scholar 

  • Gross, R. S. and B. F. Chao, The gravitational signature of earthquakes, in Gravity, Geoid, and Geodynamics 2000, edited by M. G. Sideris, pp. 205–210, IAG Symposia Vol. 123, Springer-Verlag, New York, 2001.

    Chapter  Google Scholar 

  • Heiskanen, W. H. and Z. Moritz, Physical Geodesy, Freeman, San Francisco, 1967.

    Google Scholar 

  • Khan, S. A. and O. Gudmundsson, GPS analyses of the Sumatra-Andaman Earthquake, EOS, Transactions, American Geophysical Union, 86(9), 2005.

  • National Research Council, NAS, Satellite Gravity and the Geosphere, edited by J. O. Dickey, Washington, D.C., 1997.

  • Okubo, S., Reciprocity theorem to compute the static deformation due to a point dislocation buried in a spherically symmetric Earth, Geophys. J. Int., 115, 921–928, 1993.

    Article  Google Scholar 

  • Okubo, S., W. Sun, T. Yoshino, T. Kondo, J. Amagai, H. Kiuchi, Y. Koyama, R. Ichikawa, and M. Sekido, Far-Field Deformation due to Volcanic Activity and Earthquake Swarm, Vistas for Geodesy in the New Millennium, edited by J. Adam and K. P. Schwarz, International Association of Geodesy Symposia, Volume125, 518–522, 2002.

    Google Scholar 

  • Sun, W. and S. Okubo, Surface potential and gravity changes due to internal dislocations in a spherical earth—I. Theory for a point dislocation, Geophys. J. Int., 114, 569–592, 1993.

    Article  Google Scholar 

  • Sun, W. and S. Okubo, Co-seismic Deformations Detectable by Satellite Gravity Missions—a Case Study of Alaska (1964, 2002) and Hokkaido (2003) Earthquakes in the Spectral Domain, J. Geophys. Res., 109(B4), B04405, doi:10.1029/2003JB002554, 2004a.

    Google Scholar 

  • Sun, W. and S. Okubo, Truncated Co-seismic Geoid and Gravity Changes in the Domain of Spherical Harmonic Degree, Earth Planets Space, 56, 881–892, 2004b.

    Article  Google Scholar 

  • Tamisiea, M. E., E. W. Leuliette, J. L. Davis, and J. X. Mitrovica, Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements, Geophys. Res. Lett., 32(20), L20501, 10.1029/2005GL023961.

  • Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, GRACE Measurements of Mass Variability in the Earth System, Science, 305(5683), 503–505, DOI:10.1126/science.1099192, 2004.

    Article  Google Scholar 

  • Wahr, J., M. Molenaar, and F. Bryan, Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103, 30205–30230, 1998.

    Article  Google Scholar 

  • Watkins, M. M., W. M. Folkner, B. F. Chao, and B. D. Tapley, The NASA EX-5 Mission: A laser interferometer follow-on to GRACE, IAG Symp. GGG2000, Banff, July, 2000.

    Google Scholar 

  • Xu, H. and F. Jiang, Transformation of spherical harmonic expressions of gravity anomaly, ACTA Geodetica et Cartographica Sinica, 7, 252–260, 1964.

    Google Scholar 

  • Yamanaka, Y., Off west coast of northern Sumatra, Earthquake information centre seismological note No. 161, Earthquake Res. Instit., Univ. Tokyo. (, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wenke Sun.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and permissions

About this article

Cite this article

Sun, W., Okubo, S. & Sugano, T. Determining dislocation Love numbers using satellite gravity mission observations. Earth Planet Sp 58, 497–503 (2006).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words