Skip to main content

Simulations of SH wave scattering due to cracks by the 2-D finite difference method

Abstract

We simulate SH wave scattering by 2-D parallel cracks using the finite difference method (FDM), instead of the popularly used boundary integral equation method (BIEM). Here special emphasis is put on simplicity; we apply a standard FDM (fourth-order velocity-stress scheme with a staggered grid) to media including tractionfree cracks, which are expressed by arrays of grid points with zero traction. Two types of accuracy tests based on comparison with a reliable BIEM, suggest that the present method gives practically sufficient accuracy, except for the wavefields in the vicinity of cracks, which can be well handled if the second-order FDM is used instead. As an application of this method, we also simulate wave propagation in media with randomly distributed cracks of the same length. We experimentally determine the attenuation and velocity dispersion induced by scattering from the synthetic seismograms, using a waveform averaging technique. It is shown that the results are well explained by a theory based on the Foldy approximation for crack densities of up to about 0.1. The presence of a free surface does not affect the validity of the theory. A preliminary experiment also suggests that the validity will not change even for multi-scale cracks.

References

  1. Aki, K. and P. G. Richards, Quantitative Seismology, 2nd edition, 699 pp., University Science Books, Sausalito, California, 2002.

    Google Scholar 

  2. Benites, R., K. Aki, and K. Yomogida, Multiple scattering of SH waves in 2-D media with many cavities, Pure Appl. Geophys., 138, 353–390, 1992.

    Article  Google Scholar 

  3. Benites, R., P. M. Roberts, K. Yomogida, and M. Fehler, Scattering of elastic waves in 2-D media I. Theory and test, Phys. Earth Planet. Inter., 104, 161–173, 1997.

    Article  Google Scholar 

  4. Bouchon, M., Diffraction of elastic waves by cracks or cavities using the discrete wavenumber method, J. Acoust. Soc. Am., 81, 1671–1676, 1987.

    Article  Google Scholar 

  5. Clayton, R. and B. Engquist, Absorbing boundary conditions for acoustic and elastic equations, Bull. Seism. Soc. Am., 67, 1529–1540, 1977.

    Google Scholar 

  6. Coates, R. T. and M. Schoenberg, Finite-difference modeling of faults and fractures, Geophysics, 60, 1514–1526, 1995.

    Article  Google Scholar 

  7. Coutant, O., Numerical study of the diffraction of elastic waves by fluidfilled cracks, J. Geophys. Res., 94, 17805–17818, 1989.

    Article  Google Scholar 

  8. Crampin, S., The fracture criticality of crustal rocks, Geophys. J. Int., 118, 428–438, 1994.

    Article  Google Scholar 

  9. Fehler, M. and K. Aki, Numerical study of diffraction of plane elastic waves by a finite crack with application to location of a magma lens, Bull. Seism. Soc. Am., 68, 573–598, 1978.

    Google Scholar 

  10. Foldy, L. L., The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., 67, 107–119, 1945.

    Article  Google Scholar 

  11. Frankel, A., A review of numerical experiments on seismic wave scattering, Pure Appl. Geophys., 131, 639–685, 1989.

    Article  Google Scholar 

  12. Gibson, B. S. and A. R. Levander, Apparent layering in commonmidpoint stacked images of two-dimensionally heterogeneous targets, Geophysics, 55, 1466–1477, 1990.

    Article  Google Scholar 

  13. Hong, T.-K. and B. L. N. Kennett, On a wavelet-based method for the numerical simulation of wave propagation, J. Comp. Phys., 183, 577–622, 2002.

    Article  Google Scholar 

  14. Hudson, J. A., A higher order approximation to the wave propagation constants for a cracked solid, Geophys. J. Roy. Astr. Soc., 87, 265–274, 1986.

    Article  Google Scholar 

  15. Ikelle, L. T., S. K. Yung, and F. Daube, 2-D random media with ellipsoidal autocorrelation functions, Geophysics, 58, 1359–1372, 1993.

    Article  Google Scholar 

  16. Ishimaru, A., Wave Propagation and Scattering in Random Media, Vols. 1 and 2, 609 pp., Academic Press, New York, 1978 (reissued in 1997 by IEEE Press and Oxford Univ. Press, New York).

    Google Scholar 

  17. Jannaud, L. R., P. M. Adler, and C. G. Jacquin, Spectral analysis and inversion of codas, J. Geophys. Res., 96, 18215–18231, 1991a.

    Article  Google Scholar 

  18. Jannaud, L. R., P. M. Adler, and C. G. Jacquin, Frequency dependence of the Q factor in random media, J. Geophys. Res., 96, 18233–18243, 1991b.

    Article  Google Scholar 

  19. Kawahara, J., Scattering of P, SV waves by a random distribution of aligned open cracks, J. Phys. Earth, 40, 517–524, 1992.

    Article  Google Scholar 

  20. Kawahara, J. and T. Yamashita, Scattering of elastic waves by a fracture zone containing randomly distributed cracks, Pure Appl. Geophys., 139, 121–144, 1992.

    Article  Google Scholar 

  21. Keller, J. B., Stochastic equations and wave propagation in random media, Proc. Symp. Appl. Math., 16, 145–170, 1964.

    Article  Google Scholar 

  22. Kelner, S., M. Bouchon, and O. Coutant, Numerical simulation of the propagation of P waves in fractured media, Geophys. J. Int., 137, 197–206, 1999.

    Article  Google Scholar 

  23. Kikuchi, M., Dispersion and attenuation of elastic waves due to multiple scattering from inclusions, Phys. Earth Planet. Inter., 25, 159–162, 1981a.

    Article  Google Scholar 

  24. Kikuchi, M., Dispersion and attenuation of elastic waves due to multiple scattering from cracks, Phys. Earth Planet. Inter., 27, 100–105, 1981b.

    Article  Google Scholar 

  25. Levander, A. R., Forth-order finite-difference P-SV seismograms, Geophysics, 53, 1425–1436, 1988.

    Article  Google Scholar 

  26. Liu, E. and Z. Zhang, Numerical study of elastic wave scattering by cracks or inclusions using the boundary integral equation method, J. Comp. Acoust., 9, 1039–1054, 2001.

    Article  Google Scholar 

  27. Madariaga, R., Dynamics of an expanding circular fault, Bull. Seism. Soc. Am., 66, 639–666, 1976.

    Google Scholar 

  28. Main, I. G., S. Peacock, and P. G. Meredith, Scattering attenuation and the fractal geometry of fracture systems, Pure Appl. Geophys., 133, 283–304, 1990.

    Article  Google Scholar 

  29. Mal, A. K., Interaction of elastic waves with a Griffith crack, Int. J. Engng. Sci., 8, 763–776, 1970.

    Article  Google Scholar 

  30. Muir, F., J. Dellinger, J. Etgen, and D. Nichols, Modeling elastic fields across irregular boundaries, Geophysics, 57, 1189–1193, 1992.

    Article  Google Scholar 

  31. Müller, T. M. and S. A. Shapiro, Most probable seismic pulses in single realizations in two- and three-dimensional random media, Geophys. J. Int., 144, 83–95, 2001.

    Article  Google Scholar 

  32. Murai, Y., J. Kawahara, and T. Yamashita, Multiple scattering of SH waves in 2-D elastic media with distributed cracks, Geophys. J. Int., 122, 925–937, 1995.

    Article  Google Scholar 

  33. Okamoto, T. and H. Takenaka, Fluid-solid boundary implementation in the velocity-stress finite-difference method, Zisin (J. Seism. Soc. Japan), 57, 355–364, 2005 (in Japanese with English abstract and figures)

    Google Scholar 

  34. Pointer, T., E. Liu, and J. A. Hudson, Numerical modelling of seismic waves scattered by hydrofractures: application of the indirect boundary element method, Geophys. J. Int., 135, 289–303, 1998.

    Article  Google Scholar 

  35. Roth, M. and M. Korn, Single scattering theory versus numerical modelling in 2-D random media, Geophys. J. Int., 112, 124–140, 1993.

    Article  Google Scholar 

  36. Saenger, E. H. and S. A. Shapiro, Effective velocities in fractured media: a numerical study using the rotated staggered finite-difference grid, Geophys. Prospect., 50, 183–194, 2002.

    Article  Google Scholar 

  37. Saenger, E. H., N. Gold, and S. A. Shapiro, Modeling the propagation of elastic waves using a modified finite-difference grid, Wave Motion, 31, 77–79, 2000.

    Article  Google Scholar 

  38. Saenger, E. H., O. S. Krüger, and S. A. Shapiro, Modeling the propagation of elastic waves using a modified finite-difference grid, Geophys. Prospect., 52, 183–195, 2004.

    Article  Google Scholar 

  39. Saito, T., H. Sato, M. Fehler, and M. Ohtake, Simulating the envelope of scalar waves in 2D random media having power-law spectra of velocity fluctuation, Bull. Seism. Soc. Am., 93, 240–252, 2003.

    Article  Google Scholar 

  40. Samuelides, Y. and T. Mukerji, Velocity shift in heterogeneous media with anisotropic spatial correlation, Geophys. J. Int., 134, 778–786, 1998.

    Google Scholar 

  41. Sato, H. and M. C. Fehler, Seismic Wave Propagation and Scattering in the Heterogeneous Earth, 308 pp., Springer-Verlag, New York, 1998.

    Google Scholar 

  42. Suzuki, Y., Simulations of seismic waves scattered by 2-D cracks using the finite difference method, MSc thesis, Ibaraki University, Mito, 2004 (in Japanese).

    Google Scholar 

  43. Van Antwerpen, V. A., W. A. Mulder, and G. C. Herman, Finite-difference modeling of two-dimensional elastic wave propagation in cracked media, Geophys. J. Int., 149, 169–178, 2002.

    Article  Google Scholar 

  44. Van Baren, G. B., W. A. Mulder, and G. C. Herman, Finite-difference modeling of scalar-wave propagation in cracked media, Geophysics, 66, 267–276, 2001.

    Article  Google Scholar 

  45. Van Vossen, R., J. O. A. Robertsson, and C. H. Chapman, Finite-difference modeling of wave propagation in a fluid-solid configuration, Geophysics, 67, 618–624, 2002.

    Article  Google Scholar 

  46. Viriuex, J., SH-wave propagation in heterogeneous media: velocity-stress finite difference method, Geophysics, 49, 1933–1957, 1984.

    Article  Google Scholar 

  47. Vlastos, S., E. Liu, I. G. Main, and X.-Y. Li, Numerical simulation of wave propagation in media with discrete distributions of fractures: effects of fracture sizes and spatial distributions, Geophys. J. Int., 152, 649–668, 2003.

    Article  Google Scholar 

  48. Wessel, P. and W. H. F. Smith, New, improved version of the Generic Mapping Tools Released, EOS, Trans., Am., Geophys. Un., 79, 579, 1998.

    Article  Google Scholar 

  49. Yamashita, T., Attenuation and dispersion of SH waves due to scattering by randomly distributed cracks, Pure Appl. Geophys., 132, 545–568, 1990.

    Article  Google Scholar 

  50. Yomogida, K. and R. Benites, Scattering of seismic waves by cracks with the boundary integral method, Pure Appl. Geophys., 159, 1771–1789, 2002.

    Article  Google Scholar 

  51. Zhang, Ch. and D. Gross, On Wave Propagation in Elastic Solids with Cracks, 248 pp., Computational Mechanics, Southampton, UK, 1997.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suzuki, Y., Kawahara, J., Okamoto, T. et al. Simulations of SH wave scattering due to cracks by the 2-D finite difference method. Earth Planet Sp 58, 555–567 (2006). https://doi.org/10.1186/BF03351953

Download citation

Key words

  • Scattering
  • cracked media
  • finite difference methods
  • attenuation
  • dispersion