Skip to main content

A numerical analysis of seismic waves for an anisotropic fault zone

Abstract

In this study we examine the effects of anisotropy on the seismic wavefield in a fault zone from computation of the synthetic seismograms for a simple fault zone model and a variety of seismic wave sources. The fault zone is modeled by a homogeneous vertical layer with transverse isotropy, induced by cracks, sandwiched between isotropic half-spaces (host rocks). The symmetry axis of the transverse isotropy is horizontal and perpendicular to the fault zone strike. We calculate the synthetic seismograms for this anisotropic fault zone model using a semianalytical method, the propagator matrix method. The synthetic seismograms show a later phase arriving after the main shear-wave in the horizontal component perpendicular to the fault zone strike at most stations near the fault zone. It is the slower shear-wave (qS2) and its reverberation. The amplitude of this phase and the time delay from the main shear-wave arrival are proportional to the degree of anisotropy, which suggests that observing such phase in field measurements may imply the presence of an anisotropic fault zone. We also perform the shear-wave splitting measurements by applying the cross-correlation method to the synthetic seismograms for various sources. For a strike-slip source, the synthetic seismograms show that the wavefield is more affected by the velocity structure than by the degree of anisotropy, which makes it difficult to estimate the anisotropic (shearwave splitting) parameters. For normal and dip-slip fault sources with the strike parallel to or striking against the fault zone, the effects of anisotropy is so dominant that the anisotropic fault zone can be detected. These results suggest that the determination of the anisotropic properties in the fault zone would require an appropriate station deployment and the source type information.

References

  • Anderson, D. L. and A. M. Dziewonski, Upper mantle anisotropy: evidence from free oscillations, Geophys. J. Roy. Astr. Soc., 69, 383–404, 1982.

    Article  Google Scholar 

  • Ben-Menahem, A, Source mechanism of the 1906 San Francisco earthquake, Phys. Earth Planet. Inter., 17, 163–181, 1978.

    Article  Google Scholar 

  • Booth, D. C. and S. Crampin, Shear-wave polarizations on a curved wavefront at an isotropic free-surface, Geophys. J. Roy. Astr, Soc., 83, 31–45, 1985.

    Article  Google Scholar 

  • Bowman, J. R. and M. Ando, Shear-wave splitting in the uppermantle wedge above the Tonga subduction zone, Geophys. J. Roy. Astr. Soc., 88, 25–41, 1987.

    Article  Google Scholar 

  • Chester, F. M., J. P. Evans, and R. L. Biegel, Internal structure and weakening mechanisms of the San Andreas fault, J. Geophys. Res., 98, 771–786, 1993.

    Article  Google Scholar 

  • Cochran, E. S., J. E. Vidale, and Y. G. Li, Near-fault anisotropy following the Hector Mine earthquake, J. Geophys. Res., 108, 2436, doi:10.1029/ 2002JB002352, 2003.

    Article  Google Scholar 

  • Crampin, S., Seismic wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic, Geophys. J. Roy. Astr. Soc., 53, 467–496, 1978.

    Article  Google Scholar 

  • Crampin, S. and S. Peacock, A review of shear-wave splitting in the compliant crack-critical anisotropic Earth, Wave Motion, 41, 59–77, 2005.

    Article  Google Scholar 

  • Crampin, S., R. Evans, B. Üçer, M. Doyle, J. P. Davis, G. V. Yegorkina, and A. Miller, Observations of dilatancy-induced polarization anomalies and earthquake prediction, Nature, 286, 874–877, 1980.

    Article  Google Scholar 

  • Evans, R., Effects of the free surface on shear wavetrains, Geophys. J. Roy. Astr. Soc., 76, 165–172, 1984.

    Article  Google Scholar 

  • Gilbert, F. and G. Backus, Propagator matrices in elastic wave and vibration problems, Geophysics, 31, 326–332, 1966.

    Article  Google Scholar 

  • Haskell, N. A., The dispersion of surface waves in multilayered media, Bull. Seism. Soc. Am., 43, 17–34, 1953.

    Google Scholar 

  • Herrmann, R. B., SH-wave generation by dislocation sources—A numerical study, Bull. Seism. Soc. Am., 69, 1–15, 1979.

    Google Scholar 

  • Hough, S. E., Y. Ben-Zion, and P. C. Leary, Fault-zone waves observed at the southern Joshua Tree earthquake rupture zone, Bull. Seism. Soc. Am., 84, 761–767, 1994.

    Google Scholar 

  • Hudson, J. A., Overall properties of a cracked solid, Math. Proc. Camb. Phil. Soc., 88, 371–384, 1980.

    Article  Google Scholar 

  • Hudson, J. A., Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. Roy. Astr. Soc., 64, 133–150, 1981.

    Article  Google Scholar 

  • Igel, H., Y. Ben-Zion, and P. C. Leary, Simulation of SH- and P-SV-wave propagation in fault zones, Geophys. J. Int., 128, 533–546, 1997.

    Article  Google Scholar 

  • Kawasaki, I. and T. Tanimoto, Radiation patterns of body waves due to the seismic dislocation occurring in an anisotropic source medium, Bull. Seism. Soc. Am., 71, 37–50, 1981.

    Google Scholar 

  • Li, Y. G., P. C. Leary, K. Aki, and P. E. Malin, Seismic trapped modes in the Oroville and San Andreas fault zones, Science, 249, 763–766, 1990.

    Article  Google Scholar 

  • Li, Y. G., W. L. Ellsworth, C. H. Thurber, P. E. Malin, and K. Aki, Faultzone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California, Bull. Seism. Soc. Am., 87, 210–221, 1997.

    Google Scholar 

  • Liu, E. and S. Crampin, Effects of the internal shear wave window: Comparison with anisotropy induced splitting, J. Geophys. Res., 95, 11275–11281, 1

    Article  Google Scholar 

  • Mandal, B. and B. J. Mitchell, Complete seismogram synthesis for transversely isotropic media, J. Geophys., 59, 149–156, 1986.

    Google Scholar 

  • Mizuno, T., K. Yomogida, H. Ito, and Y. Kuwahara, Spatial distribution of shear wave anisotropy in the crust of the southern Hyogo region by borehole observation, Geophys. J. Int., 147, 528–542, 2001.

    Article  Google Scholar 

  • Nakamura, T. and H. Takenaka, Influence of anisotropy in the fault zone on the seismic wave, Zisin 2 (J. Seism. Soc. Jpn.), 57, 331–342, 2005 (in Japanese with English abstract).

    Google Scholar 

  • Nakamura, T., H. Takenaka, and S. Suzuki, Strong S-wave anisotropy in the aftershock region of the 2000 Tottori-ken Seibu, Japan, earthquake (Mw6.6), Earth Planets Space, 57, 1055–1062, 2005.

    Article  Google Scholar 

  • O’Connell, R. and B. Budiansky, Seismic velocities in dry and saturated cracked solids, J. Geophys. Res., 79, 5412–5426, 1974.

    Article  Google Scholar 

  • Peacock, S., S. Crampin, D. C. Booth, and J. B. Fletcher, Shear-wave splitting in the Anza seismic gap, Southern California: temporal variations as possible precursors, J. Geophys. Res., 93, 3339–3356, 1988.

    Article  Google Scholar 

  • Peng, Z. and Y. Ben-Zion, Systematic analysis of crustal anisotropy along the Karadere-Düzce branch of the north Anatolian fault, Geophys. J. Int., 159, 253–274, 2004.

    Article  Google Scholar 

  • Savage, M. K., Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?, Rev. Geophys, 37, 65–106, 1999.

    Article  Google Scholar 

  • Shih, X. R., R. P. Meyer, and J. F. Schneider, An automated, analytical method to determine shear-wave splitting, Tectonophysics, 165, 271–278, 1989.

    Article  Google Scholar 

  • Takeuchi, H. and M. Saito, Seismic surface waves, in Methods in Computational Physics, Vol. 11, pp. 217–295, edited by B. A. Bolt, Academic Press, New York, 1972.

  • Vavryčcuk, V., Inversion for anisotropy from non-double-couple components of moment tensors, J. Geophys. Res., 109, B07306, doi:10.1029/2003JB002926, 2004.

  • Wang, C. Y. and R. B. Herrmann. A numerical study of P-, SV-, and SHwave generation in a plane layered medium, Bull. Seism. Soc. Am., 70, 1015–1036, 1980.

    Google Scholar 

  • Watanabe, A., H. Takenaka, and S. Suzuki, Spatial variation of shear wave anisotropy in the focal region of the 1997 northwestern Kagoshima earthquakes, Abstr. Jpn. Earth Planet. Sci. Joint Meeting, Sz-P003, 2001.

    Google Scholar 

  • Wessel, P. and W. H. F. Smith, Free software helps map and display data, EOS Trans. Am. Geophys. Union, 72, 441–446, 1991.

    Article  Google Scholar 

  • Yamanaka, H., Y. Hiramatsu, and H. Katao, Spatial distribution of atypical aftershocks of the 1995 Hyogo-ken Nanbu earthquake, Earth Planets Space, 54, 933–945, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Nakamura, T., Takenaka, H. A numerical analysis of seismic waves for an anisotropic fault zone. Earth Planet Sp 58, 569–582 (2006). https://doi.org/10.1186/BF03351954

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351954

Key words

  • Seismic anisotropy
  • shear-wave splitting
  • synthetic seismogram
  • fault zone