Skip to main content

Vulcanian eruptions with dominant single force components observed during the Asama 2004 volcanic activity in Japan

Abstract

On September 1, 2004, Mt. Asama in central Japan erupted for the first time in 21 years. Between this moderate eruption and mid-November of the same year, 4 additional moderate eruptions occurred. We installed 8 broadband seismic stations in addition to the short period seismic network around the volcano and succeeded in recording the near-field seismic signals associated with the summit eruptions. The results of the waveform inversions clearly show that the force system exerted at the source region is dominated by vertical single force components. The source depths of the single force are shallower than 200 m from the bottom of the summit crater, and the order of magnitude of the single force is 1010–1011N. The source time history of each vertical single force component consists of two downward forces and one upward force. The initial downward force probably corresponds to the sudden removal of a lid capping the pressurized conduit. The drag force due to viscous magma moving upward in the conduit can explain the upward force. The correlation between the single force amplitudes and the amounts of volcanic deposits emitted from the summit crater are not necessarily positive, suggesting that the amount of deposits remaining within the summit crater may have played an important role in the excitation of the single force.

References

  • Akaike, H., A new look at the statistical model identification, IEEE Trans. Autom. Contol, AC-9, 716–723, 1974.

    Article  Google Scholar 

  • Aki, K. and P. G. Richards, Quantitative Seismology, Theory and Method vol. I, 557 pp., Freeman, New York, 1980.

    Google Scholar 

  • Aoki, Y., H. Watanabe, E. Koyama, J. Oikawa, and Y. Morita, Ground deformation associated with the 2004–2005 unrest of Asama Volcano, Japan, Bull. Volcanol. Soc. Japan, 50, 575–584, 2005 (in Japanese with English abstract).

    Google Scholar 

  • Aramaki, S., Geology of Asama Volcano, J. Fac. Sci. Univ. Tokyo, 14, 229–443, 1963.

    Google Scholar 

  • Blackstock, D. T., Fundamentals of Physical Acoustics, 541 pp., Wiley-Interscience, New-York, 2000.

    Google Scholar 

  • Chouet, B. A., P. Dawson, T. Ohminato, M. Martini, G. Saccorotti, F. Giudicepietro, G. De Luca, G. Milana, and R. Scarpa, Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversions of very-long-period data, J. Geophys. Res., 108, doi:10.1029/2002JB001919, 2003.

  • Chouet, B., P. Dawson, and A. Arciniega, Source mechanism of vulcanian degassing at Popocatépetl Volcano, Mexico, determined from waveform inversion of very long period signals, J. Geophys. Res., 110, doi:10.1029/2004JB003524, 2005.

  • Dobran, F., Volcanic Processes Mechanisms in Material Transport, 590 pp., Kluwer Academic, 2001.

    Book  Google Scholar 

  • Ekström, G., M. Nettles, and G. A. Abers, Glacial earthquakes, Science, 302, 622–624, doi:10.1126/science.1088057, 2003.

    Article  Google Scholar 

  • Japan Meteorological Agency, Eruptions of Asamayama volcano in September 2004, Abst. Volcanol. Soc. Japan 2004 Fall Meeting, 181, 2004 (in Japanese).

  • Fujiwara, Y., T. Sakai, K. Kato, M. Nakamura, H. Naito, H. Yamasato, M. Churei, H. Hiramatsu, Y. Ueda, and S. Iijima, Mt. Asama eruption on 1st September 2004: Air-shock waveforms observed all over Japan, Abst. Volcanol. Soc. Jap. 2004 Fall Meeting, 202, 2004 (in Japanese).

  • Kanamori, H. and J. W. Given, Analysis of seismic body waves excited by the May 18, 1980, eruption of Mount St. Helens—a terrestrial monopole?, J. Geophys. Res., 87, 5422–5432, 1982.

    Article  Google Scholar 

  • Kanamori, H., J. Given, and T. Lay, Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980, J. Geophys. Res., 89, 1856–1866, 1984.

    Article  Google Scholar 

  • Kawakatsu, H., Centroid single force inversion of seismic waves generated by landslides, J. Geophys. Res., 94, 12363–12374, 1989.

    Article  Google Scholar 

  • McNutt, S. R., Volcanic tremor amplitude correlated with volcano explosivity and its potential use in determining ash hazards to aviation, USGS Bull., 2047, 377–385, 1994.

    Google Scholar 

  • Minakami, T., Seismology of volcanoes in Japan, in Physical Volcanology Developments in Solid Earth Geophysics vol 6, edited by Civetta et al., 333 pp., Elsevier, Amsterdam, 1–27, 1974.

    Google Scholar 

  • Murakami, M., Magma migration preceding 2004 eruption of Asama Volcano detected by GPS, Abst. Volcanol. Soc. Jap. 2004 Fall Meeting, 204, 2004 (in Japanese).

  • Murase, T. and A. R. McBirney, Properties of some common igneous rocks and their melts at high temperatures, Geol. Soc. Am. Bull., 84, 3563–3592, 1973.

    Article  Google Scholar 

  • Newhall, C. G. and S. Self, The volcanic explosivity index (VEI): An estimate of explosive magnitude for historical volcanism, J. Geophys. Res., 87, 1231–1238, 1982.

    Article  Google Scholar 

  • Nishimura, T., Source mechanisms of volcanic explosion earthquakes: single force and implosive sources, J. Volcanol. Geotherm. Res., 86, 97–106, 1998.

    Article  Google Scholar 

  • Nishimura, T. and H. Uchida, Application of single force model to the volcanic explosion earthquakes observed at Asama Volcano in 2004, Bull. Volcanol. Soc. Japan, 50, 387–391, 2005 (in Japanese with English abstract).

    Google Scholar 

  • Nishimura, T., H. Hamaguchi, and S. Ueki, Source mechanisms of volcanic tremor and low-frequency earthquakes associated with the 1988–1989 eruptive activity of Mt. Tokachi, Hokkaido, Japan, Geophys. J. Int., 121, 444–458, 1995.

    Article  Google Scholar 

  • Ohminato, T. and B. Chouet, A free-surface boundary condition for including 3D topography in the finite difference method, Bull. Seismol. Soc. Am., 87, 494–515, 1997.

    Google Scholar 

  • Ohminato, T., B. Chouet, P. Dawson, and S. Kedar, Waveform inversion of very-long-period impulsive signals associated with magmatic injection beneath Kilauea volcano, Hawaii, J. Geophys. Res., 103, 23839–23862, 1998.

    Article  Google Scholar 

  • Oki, S., M. Murakami, N. Watanabe, B. Urabe, and M. Miyawaki, Topographic change of the summit crater of the Asama volcano during 2004 eruption derived from repeated airborne Synthetic Aperture Radar (SAR) measurements, Bull. Volcanol. Soc. Japan, 50, 401–410, 2005 (in Japanese with English abstract).

    Google Scholar 

  • Ripepe, M., S. Ciliberto, and M. D. Schiava, Time constraints for modeling source dynamics of volcanic explosions at Stromboli, J. Geophys. Res., 106, 8713–8727, 2001.

    Article  Google Scholar 

  • Rutherford, M. J. and J. E. Gardner, Rates of magma ascent, in Encyclopedia of Volcanoes, edited by Sigrudsson et al., 1417 pp., Academic Press, San Diego, 207–217, 2000.

  • Takei, Y. and M. Kumazawa, Why have the single force and torque been excluded from seismic source models?, Geophys. J. Int., 118, 20–30, 1994.

    Article  Google Scholar 

  • Takeo, M., H. Yamasato, I. Furuya, and M. Seino, Analysis of long-period seismic waves excited by the November 1987 eruption of Izu-Oshima volcano, J. Geophys. Res., 95, 19377–19393, 1990.

    Article  Google Scholar 

  • Tameguri, T., M. Iguchi, and K. Ishihara, Mechanism of explosive eruptions from moment tensor analyses of explosion earthquakes at Sakurajima Volcano, Japan, Bull. Volcanol. Soc. Japan, 47, 197–215, 2002.

    Google Scholar 

  • Turcotte, D. L. and G. Schubert, Geodynamics Second Edition, 456 pp., Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  • Turcotte, D. L., H. Ockendon, J. R. Ockendon, and S. J. Cowley, A mathematical model of vulcanian eruptions, Geophys. J. Int., 103, 211–217, 1990.

    Article  Google Scholar 

  • Uhira, K. and M. Takeo, The source of explosive eruption of Sakurajima volcano, Japan, J. Geophys. Res., 99, 17775–17789, 1994.

    Article  Google Scholar 

  • Yamamoto, M., M. Takeo, T. Ohminato, J. Oikawa, Y. Aoki, H. Ueda, S. Nakamura, H. Tsuji, E. Koyama, N. Osada, and T. Urabe, A unique earthquake activity preceding the eruption at Asama volcano in 2004, Bull. Volcanol. Soc. Japan, 50, 393–400, 2005 (in Japanese with English abstract).

    Google Scholar 

  • Yoshimoto, M., T. Shimano, S. Nakada, E. Koyama, H. Tsuji, A. Iida, M. Kurokawa, Y. Okayama, M. Nonaka, T. Kaneko, H. Hoshizumi, Y. Ishizuka, R. Furukawa, K. Nogami, S. Onizawa, K. Niihori, T. Sugimoto, and M. Nagai, Mass estimation and characteristics of ejecta from the 2004 eruptions of Asama volcano, Bull. Volcanol. Soc. Japan, 50, 519–533, 2005 (in Japanese with English abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Ohminato.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Ohminato, T., Takeo, M., Kumagai, H. et al. Vulcanian eruptions with dominant single force components observed during the Asama 2004 volcanic activity in Japan. Earth Planet Sp 58, 583–593 (2006). https://doi.org/10.1186/BF03351955

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351955

Key words