Skip to main content

A study of the storm event on October 21–22, 1999 by the MHD simulation

Abstract

We carried out a high resolution three-dimensional magnetohydrodynamic (MHD) simulation of the interaction between the solar wind and the Earth’s magnetosphere during a strong magnetic storm on October 21–22, 1999. The input to the simulation was from WIND solar wind observations. As the IMF is strongly southward (−20 nT to −30 nT) for 6 hours, the geomagnetic field lines in the dayside magnetopause are eroded to the geosynchronous orbit (GEO) region by reconnection. The associated magnetic flux is transferred from the dayside magnetosphere to the tail. The reconnection region still appears near GEO region on the dayside magnetopause, even though the IMF Bz component becomes small or northward, because of the influence of the strong IMF By (30 nT). IMF lines can successively reconnect with the naked and large geomagnetic field line in the dayside flank regions. Thus, the cross polar cap potential is maintained to be large value and convection in the ionosphere is enhanced. The cross polar cap potential is governed by IMF By as well as Bz (ф ≈250 kV for Bz ≈ −20 nT and ф ≈ 300 kV for Bz ≈ − 30 nT), and it saturates during the strong southward IMF. A large energy flux enters the ionosphere at very low latitudes (50°) and the inner edge of the plasma sheet becomes very close to the Earth X = −3.2 RE for a strong magnetic storms. The open-closed boundary extends to 60° latitudes on the nightside, 72° on the dayside, 62° on dawn, and 66° on dusk. Enhanced energy flux appears at low latitudes (50°) on the nightside in simulation. Moreover, the energy flux in the dusk region (19 MLT) appears down to 55° latitude in simulation, which is consistent with the low latitude boundary of the 0.02-20 keV particles detected by TED of the NOAA-15. A convective electric field, which is penetrating to the Earth-side of the NENL, is almost comparable to that of the solar wind. The present MHD simulation study give reasonable results even for extreme conditions and thereby its usefulness is demonstrated as a physical model for space weather studies.

References

  • Ashour-Abdalla, M., M. El-Alaoui, V. Peroomian, R. J. Walker, L. M. Zelenyi, L. A. Frank, and W. R. Paterson, Localized reconnection and substorm onset on Dec. 22, 1996, Geophys. Res. Lett., 26, 3545–3548, 1999.

    Article  Google Scholar 

  • Ashour-Abdalla, M., M. El-Alaoui, F. V. Coroniti, R. J. Walker, and V. Peroomian, A new convection state at substorm onset: Results from an MHD study, Geophys. Res. Lett., 29, 1965, 2002a.

    Article  Google Scholar 

  • Ashour-Abdalla, M., M. El-Alaoui, V. Peroomian, R. J. Walker, L. M. Zelenyi, L. A. Frank, and W. R. Paterson, The origin of the near-Earth plasma population during a substorm on November 24, 1996, J. Geophys. Res., 105, 2589–2605, 2002b.

    Article  Google Scholar 

  • Brecht, S. H., J. G. Lyon., J. A. Fedder, and K. Hain, A simulation study of east-west IMF effects on the magnetosphere, Geophys. Res. Lett., 8, 397–400, 1981.

    Article  Google Scholar 

  • Evans, D. S. and M. S. Greer, Polar orbiting environmental satellite space environment monitor: 2. Instrument description and archive data documentation, NOAA Tech. Memo. OAR SEC-93, Natl. Oceanic and Atmos. Admin., Boulder, Colo., 2000.

    Google Scholar 

  • Fedder, J. A. and J. G. Lyon, The solar wind-magnetosphere-ionosphere current-voltage relationship, Geophys. Res. Lett., 14, 880–883, 1987.

    Article  Google Scholar 

  • Fedder, J. A., S. P. Slinker, J. G. Lyon., and R. D. Elphinstorne, Global numerical simulation of the growth phase and the expansion onset for a substorm observed by Viking, J. Geophys. Res., 100, 19083–19093, 1995.

    Article  Google Scholar 

  • Le, G., J. Raeder, C. T. Russell, G. Lu, S. M. Petrinec, and F. S. Mozer, Polar cusp and vicinity under strongly northward interplanetary magnetic field on April 11, 1997: Observations and MHD simulations, J. Geophys. Res., 106, 21083–21093, 2001.

    Article  Google Scholar 

  • Lui, A. T. Y., R.W. McEntire, and K. B. Baker, A new insight on the cause iof magnetic storms, Geophys. Res. Lett., 28, 3413–3416, 2001.

    Article  Google Scholar 

  • Lyon, J. G., S. H. Brecht, J. D. Huba, J. A. Fedder, and P. J. Palmadesso, Computer simulation of a geomagnetic substorm, Phys. Rev. Lett., 46, 1038–1041, 1981.

    Article  Google Scholar 

  • Lyons, L. R., The Geospace Modeling Program Grand Challenge, J. Geophys. Res., 103, 14781–14785, 1998.

    Article  Google Scholar 

  • Lyons, L. R., J. M. Ruohoniemi, and G. Lu, Substorm-associated changes in large-scale convection during the November 24, 1996, Geospace Environment Modeling event, J. Geophys. Res., 106, 397–405, 2001.

    Article  Google Scholar 

  • Merkine, V. G., K. Papadopoulos, G. Milikh, A. S. Sharma, X. Shao, J. Lyon, and G. Goodrich, Effects of the solar wind electric field and ionospheric conductance on the cross polar cap potential: Results of global MHD modeling, Geophys. Res. Lett., 23, 2180, 2003.

    Article  Google Scholar 

  • O’Brien, T. P. and M. B. Moldwin, Empirical plasmapause models from magnetic indices, Geophys. Res. Lett., 30, 1152, 2003.

    Article  Google Scholar 

  • Ogino, T., R. J. Walker, M. Ashour-Abdalla, and J. M. Dawson, An MHD simulation of By-dependent magnetospheric convection and field-aligned currents during northward IMF, J. Geophys. Res., 90, 10835–10842, 1985.

    Article  Google Scholar 

  • Ogino, T., R. J. Walker, and M. Ashour-Abdalla, A global magnetohydrodynamic simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field is northwards, IEEE Trans. Plasma Sci., 20(6), 817, 1992.

    Article  Google Scholar 

  • Raeder, J., J. Berchem, and M. Ashour-Abdalla, The Geospace Environment Modeling Grand Challenge: Results from a global geospace circulation model, J. Geophys. Res., 103, 14787–14797, 1998.

    Article  Google Scholar 

  • Raeder, J., R. L. McPherron, L. A. Frank, S. Kokubun, G. Lu, T. Mukai, W. R. Paterson, J. B. Sigwarth, H. J. Singer, and J. A. Slavin, Global simulation of the Geospace Environment Modeling substorm challenge event, J. Geophys. Res., 106, 381–395, 2001.

    Article  Google Scholar 

  • Richmond, A. D., Y. Kamide, B.-H. Ahn, S.-I. Akasofu, D. Alcayde, M. Blanc, O. de la Beaujardiere, D. S. Evans, J. C. Foster, E. Friis-Christensen, T. J. Fuller-Rowell, J. M. Holt, D. Knipp, H.W. Kroehl, R. P. Lepping, R. J. Pellinen, C. Senior, and A. N. Zaitzev, Mapping electrodynamic features of the high-latitude ionosphere from localized observations: Combined incoherent-scatter radar and magnetometer measurements for January 18–19, 1984, J. Geophys. Res., 93, 5760–5776, 1988.

    Article  Google Scholar 

  • Richmond, A. D., Assimilative mapping of ionospheric electrodynamics, Adv. Space Res., 12, 59–68, 1992.

    Article  Google Scholar 

  • Shue, J.-H., P. Song, C. T. Russell, J. K. Chao, and Y.-H. Yang, Toward predicting the position of the magnetopause within geosynchronous orbit, J. Geophys. Res., 105, 2641–2656, 2000.

    Article  Google Scholar 

  • Siscoe, G. L., N. M. Crooker, and K. D. Siebert, Transpolar potential saturation: Role of region 1 current system and solar wind ram pressure, J. Geophys. Res., 107, 1321–1328, 2002.

    Article  Google Scholar 

  • Slinker, S. P., J. A. Fedder, J.M. Ruohoniemi, and J. G. Lyon, GlobalMHD simulation of the magnetosphere for November 24, 1996, J. Geophys. Res., 106, 361–380, 2001.

    Article  Google Scholar 

  • Troshichev, O., H. Hayakawa, A. Matsuoka, T. Mukai, and K. Tsuruda, Cross polar cap diameter and voltage as a function of PC index and interplanetary quantities, J. Geophys. Res., 101, 13429–13435, 1996.

    Article  Google Scholar 

  • Walker, R. J., T. Ogino, J. Raeder, and M. Ashour-Abdalla, A global magnetohydrodynamic simulation of the magnetosphere when the interplanetary magnetic field is southward: the onset of magnetotail reconnection, J. Geophys. Res., 98, 17235–17246, 1993.

    Article  Google Scholar 

  • Watanabe, K. and T. Sato, Global simulation of the solar windmagnetosphere interaction: The importance of its numerical validity, J. Geophys. Res., 95, 75–88, 1990.

    Article  Google Scholar 

  • Yahnin, A. G., V. A. Sergeev, B. B. Gvozdenvsky, and S. Vennerstrom, Magnetospheric source region of discrete auroras inferred from their relationship with isotropy boundaries of energetic particles, Ann. Geophys., 15, 943–958, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Park.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Park, K.S., Ogino, T. A study of the storm event on October 21–22, 1999 by the MHD simulation. Earth Planet Sp 58, 633–643 (2006). https://doi.org/10.1186/BF03351961

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351961

Key words

  • A global MHD simulation
  • storm event study