Skip to main content

Magnetic storm effects at equatorial electrojet stations

Abstract

It is shown that there are distinctly two different mechanisms for the interaction of solar wind with the earth’s magnetosphere to produce electric field in the ionospheric heights at low and middle latitudes. A persistent or slowly varying southward Interplanetary magnetic field i.e. negative IMF-Bz generates dawn to dusk electric field at polar latitudes and a westward (dusk to dawn) electric field at dayside electrojet region which is anti-Sq in direction. A rapid increase of IMF-Bz (northward turning) imposes a westward (dusk to dawn) electric field at all latitudes of the dayside hemisphere. The process involved is the imposition of -V × Bz electric field at the magnetosphere transmitted instantaneously to the magnetic equator through the polar latitudes. The changes in the H field at ground are largest at stations close to the magnetic equator and the midday longitudes. During magnetic storms, associated with the southward IMF-Bz, there are definite enhancements in the decrease of H field at the dayside equatorial electrojet stations. These changes may be coincident with the development of auroral or magnetospheric ring currents. These enhancements may be observed during the main phase as well as during the recovery phase of the magnetic storm, but the essential condition is that the IMF-Bz has to be steadily significant southward. Sometimes during the storm period abnormally large changes in H field at day side equatorial electrojet regions are observed associated with large sudden changes in IMF-Bz following the second mechanism of solar wind magnetospheric interaction. Thus the equatorial magnetic storm effects are due to combined effects of disturbance ring current, slow and steady IMF-Bz as well as due to sudden large changes in IMF-Bz.

References

  1. Akasofu, S. I. and S. Chapman, Magnetic storms: the simultaneous development of the main phase (DR) and of polar magnetic storm (DP), J. Geophys. Res., 68, 3158–3185, 1963.

    Google Scholar 

  2. Akasofu, S. I., S. Chapman, and C. I. Meng, The polar electrojet, J. Atmos. Terr. Phys., 27, 1275–1305, 1965.

    Article  Google Scholar 

  3. Alex, S., A. R. Patil, and R. G. Rastogi, Equatorial counter electrojetsolution of some dilemma, Ind. J. Rad. Space Phys., 15, 114–118, 1986.

    Google Scholar 

  4. Axford, W. I. and C. O. Hines, A unifying theory of high latitudes geophysical phenomena and geomagnetic storms, Can. J. Phys., 39, 1433–1464, 1961.

    Article  Google Scholar 

  5. Baker, W. G. and D. F. Martyn, Electric currents in the ionosphere Part I. the conductivity, Phil. Trans. Roy. Soc. Lond., A 246, 281–294, 1953.

    Article  Google Scholar 

  6. Balsley, B. B., Electric fields in the equatorial ionosphere: a review of techniques and measurements, J. Atmosph. Terr. Phys., 35, 1035–1044, 1973.

    Article  Google Scholar 

  7. Bartels, J. and H. F. Johnston, Geomagnetic tides in horizontal intensity at Huancayo, J. Geophys. Res., 45, 269–308, 1940.

    Article  Google Scholar 

  8. Burlaga, L. F. and K. Ogilivie, Causes of sudden commencement and sudden impulses, J. Geophys. Res., 74, 2815–2825, 1960.

    Article  Google Scholar 

  9. Carter, D. A., B. B. Balsley, and W. L. Ekerlund, V.H.F. Doppler radar observations of the African Equatorial Electrojet, J. Geophys. Res., 81, 2786–2794, 1976.

    Article  Google Scholar 

  10. Chamberlain, J. W., Theory of auroral bombardment, Astrophys. J., 134, 401–424, 1961.

    Article  Google Scholar 

  11. Chandra, H., R. K. Misra, and R. G. Rastogi, Equatorial ionospheric drift and the electrojet, Planet. Space Sci., 19, 1497–1503, 1971.

    Article  Google Scholar 

  12. Chapman, S., The solar and lunar diurnal variation of the earth’s magnetism, Phil. Trans Roy. Soc. Lond., A 218, 1–118, 1919.

    Article  Google Scholar 

  13. Chapman, S., The equatorial electrojet as deduced from the abnormal current distribution above Huancayo and elsewhere, Arch. Meteorol. Geophys. Bioklimatol. Sec., A4, 368–390, 1951.

    Article  Google Scholar 

  14. Cowling, T. G. and R. Borger, Electrical conductivity of the ionospheric D region, Nature, 162, 143, 1948.

    Article  Google Scholar 

  15. Davis, T. N. and M. Sugiura, Auroral electrojet activity index AE and its universal time variations, J. Geophys. Res., 71, 785–801, 1966.

    Article  Google Scholar 

  16. Deshpande, M. R. and R. G. Rastogi, Studies in variations in the electron drifts over the magnetic equator, J. Atmos. Terr. Phys., 30, 319–323, 1968.

    Article  Google Scholar 

  17. Egedal, J., The magnetic diurnal variation of the horizontal force near the magnetic equator, Terr. Magn. Atmos. Electr., 52, 449–451, 1947.

    Article  Google Scholar 

  18. Fairfield, D. H. and L. J. Cahill, Jr., Transition region magnetic field and polar magnetic disturbances, J. Geophys. Res., 71, 155–169, 1966.

    Article  Google Scholar 

  19. Fambitakoye, O., R. G. Rastogi, J. Tabbagh, and P. Vila, Counter electrojet and Esq disappearance, J. Atmos. Terr. Phys., 35, 1119–1126, 1973.

    Article  Google Scholar 

  20. Fejer, B. G., D. T. Farley, R. F. Woodman, and C. Calderon, Dependence of equatorial F region vertical drifts and season and solar cycle, J. Geophys. Res., 84, 5792, 5796, 1979.

    Article  Google Scholar 

  21. Fejer, J. A., The effect of energetic trapped particles on magnetospheric motion and ionospheric currents, Can. J. Phys., 39, 1409, 1417, 1961.

    Article  Google Scholar 

  22. Foster, J. C., An empirical electric field model derived from chatamika radar data, J. Geophys. Res., 88, 981–987, 1983.

    Article  Google Scholar 

  23. Gouin, P. and P. N. Mayaud, A propos de l’ existence possible d’un cortre electrojet aux latitudes magnetiques equatoriales, Ann. Geophys., 23, 41–47, 1967.

    Google Scholar 

  24. Heppner, J. P., Emperical model of high latitude electric field, J. Geophys. Res., 82, 1115–1125, 1977.

    Article  Google Scholar 

  25. Kelley, M. C., C. Gonzales, E. S. Mozer, and R. F.Woodman, Conference Digest, 5th Int. Symp. On Equatorial Aeronomy, Towunsville, Australia Paper 8–3.

  26. Kern, J. W., Solar stream distortion of the geomagnetic field and polar electrojet, J. Geophys. Res., 66, 1290–1292, 1961.

    Article  Google Scholar 

  27. Kikuchi, T., H. Luhr, T. Kitamura, O. Saka, and K. Schlegel, Direct penetration of the polar electric field to the equator during a DP2 event as detected by the auroral and equatorial magnetogram chains and the EISCAT radar, J. Geophys. Res., 101, 17161–17173, 1996.

    Article  Google Scholar 

  28. Kukuchi, T., M. Pinnock, R. Rodger, H. Luehr, H. Tachihara, M. Watanabe, N. Sato, and M. Ruohoniemi, Global evolution of a substorm-associated DP2 current system observed by superdarn and magnetometers, Adv. Space Res., 26, 121–124, 2000.

    Article  Google Scholar 

  29. Misra, R. K., H. Chandra, and R. G. Rastogi, Solar cycle effects in the electron drifts over the magnetic equator, J. Geomag. Geoelectr., 23, 181–186, 1971.

    Article  Google Scholar 

  30. Moos, N. A. F., Magnetic observations made at the government Observatory Bombay 1847 to 1905 and their discussions Part II. The phenomenon and its discussion, Bombay 1910.

    Google Scholar 

  31. Nishida, A., Geomagnetic DP2 fluctuations and associated magnetospheric phenomena, J. Geophys. Res., 73, 1795–1803, 1968a.

    Article  Google Scholar 

  32. Nishida, A., Coherence of DP2 fluctuations with interplanetary magnetic field variations, J. Geophys. Res., 73, 5549–5559, 1968b.

    Article  Google Scholar 

  33. Obayashi, T. and A. Nishida, Large scale electric field in the magnetosphere, Space Sci. Rev., 8, 3–31, 1968.

    Article  Google Scholar 

  34. Onwumechilli, A., K. Kawasaki, and S. I. Akasofu, Relationship between the equatorial electrojet and polar magnetic variations, Planet. Space Sci., 21, 1–16, 1973.

    Article  Google Scholar 

  35. Patel, V. P. and H. Chandra, Ionospheric E-region drifts at Sibizmir during 1970–75, Ind. J. Rad. Space Phys., 11, 187, 1982.

    Google Scholar 

  36. Rastogi, R. G., Sudden disappearance of Esq and the reversal of the equatorial electric fields, Ann. Geophys., 28, 717–728, 1972.

    Google Scholar 

  37. Rastogi, R. G., Es-q layer at Huancayo during the March 1970 geomagnetic storm, Planet. Space Sci., 21, 197–203, 1973a.

    Article  Google Scholar 

  38. Rastogi, R. G., The effect of polar magnetic substorms on the equatorial sporadic E., Proc. Ind. Acad. Sci., 78, 130–138, 1973b.

    Google Scholar 

  39. Rastogi, R. G., Westward equatorial electrojet during daytime hours, J. Geophys. Res., 79, 1503–1512, 1974.

    Article  Google Scholar 

  40. Rastogi, R. G., On the simultaneous existence of eastward and westward flowing equatorial electrojet current, Proc. Ind. Acad. Sci., A 81, 80–92, 1975.

    Google Scholar 

  41. Rastogi, R. G., Coupling between equatorial and auroral ionospheres during polar sub-storms, Proc. Ind. Acad. Sci., 86A, 409–416, 1977.

    Google Scholar 

  42. Rastogi, R. G., The Equatorial Electrojet: Magnetic and Ionospheric Effects in Geomagnetism, edited by J. Jacobs, Academic Press Ltd., Vol. 3, pp. 461–525, 1989.

    Google Scholar 

  43. Rastogi, R. G., Geomagnetic storm effects at low latitudes, Ann. Geophysicae, 17, 438–441, 1999.

    Article  Google Scholar 

  44. Rastogi, R. G., Westward electric field in the low latitude ionosphere during the main phase of the magnetic storms occurring around the local midday hours, National Academy Science Letters, 27(1,2), 69–74, 2004.

    Google Scholar 

  45. Rastogi, R. G. and H. Chandra, Interplanetary magnetic field and the equatorial ionosphere, J. Atmos. Terr. Phys., 36, 377–379, 1974.

    Article  Google Scholar 

  46. Rastogi, R. G. and V. L. Patel, Effect of interplanetary magnetic field ionosphere over the magnetic equator, Proc. Ind. Acad. Sci., A82, 121–141, 1975.

    Google Scholar 

  47. Rastogi, R. G. and A. R. Patil, Complex structure of equatorial electrojet currents, Currn. Sci., 85, 433–436, 1986.

    Google Scholar 

  48. Rastogi, R. G., H. Chandra, and S. C. Chakravarty, The disappearance of equatorial Es and the reversal of electrojet current, Proc. Ind. Acad. Sci., 73, 62–67, 1971a.

    Google Scholar 

  49. Rastogi, R. G., H. Chandra, and R. K. Misra, Effect of magnetic activity on electron drifts in the equatorial electrojet region, Nature (London), 233, 1315, 1971b.

    Google Scholar 

  50. Rastogi, R. G., H. Chandra, R. P. Sharma, and G. Rajaram, Ground based measurements of ionospheric phenomenon associated with equatorial electrojet, Ind. J. Rad. Space Phys., 1, 119–135, 1972.

    Google Scholar 

  51. Rastogi, R. G., B. G. Fejer, and R. F. Woodman, Sudden disappearance of VHF Doppler radar echoes from the equatorial E region irregularities, Ind. J. Rad. Space Phys., 6, 39–43, 1977.

    Google Scholar 

  52. Rostoker, G. and C. G. Falthammar, Relationship between charges in the interplanetary magnetic field and variation in the magnetic field in the Earth’s surface, J. Geophys. Res., 72, 5855–5863, 1967.

    Google Scholar 

  53. Sojka, J. J., J. C. Joster, M. J. Raitt, and R. W. Schunk, High latitude connection: comparison of a simple model with incoherent scatter observations, J. Geophys. Res., 85, 703–709, 1980.

    Article  Google Scholar 

  54. Somayajulu, V. V., C. A. Reddy, and K. S. Viswanathan, Simultaneous electric field changes in the equatorial electrojet in phase with polar cusp latitude changes during a magnetic storm, Geophys. Res. Lett., 12, 473–475, 1985.

    Article  Google Scholar 

  55. Stern, D. P., Large scale electric field in the Earth’s magnetosphere, Rev. Geophys. Space. Phys., 15, 186–194, 1977.

    Google Scholar 

  56. Stewart, B., Terrestrial Magnetism, in Encyclopedia Brittanica, 9th edition, 1882.

    Google Scholar 

  57. Sugiura, M., Hourly values of eqauatorial Dst for the IGY, Annals of the International Geophysical Year, 35, 4–45, 1964.

    Google Scholar 

  58. Sugiura, M. and S. Chapman, The average morphology of geomagnetic storm with sudden commencement, Abh. Akad. Wiss. Geottingen. Math. Phys. Klasse Sonder heft, Nr. 4, 1–53, 1960.

    Google Scholar 

  59. Tsumomura, S., Numerical analysis of global ionospheric current system including the effect of equatorial enhancement, Ann. Geophys., 17, 692–706, 1999.

    Article  Google Scholar 

  60. Volland, H., A model of magnetospheric electric convection field, J. Geophys. Res., 83, 2695–2699, 1978.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. G. Rastogi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rastogi, R.G. Magnetic storm effects at equatorial electrojet stations. Earth Planet Sp 58, 645–657 (2006). https://doi.org/10.1186/BF03351962

Download citation

Key words

  • Magnetic storms
  • equatorial electrojet
  • Interplanetary Magnetic Field