Skip to main content

Influence of the interplanetary magnetic field on the ring current injection rate

Abstract

In order to check the validity of Akasofu’s ε parameter and of the Vasyliunas et al. (1982) general formula, we examine the dependence of the ring current injection rate, calculated from the Dst index for the period of 1965–1990, on the interplanetary magnetic field (IMF). We compare the influence of the Bz component with the influence of the combination of sin(θ/2), where θ is the IMF clock angle, and the IMF magnitude, B, (or the transverse component of the IMF, BT = (By2 + Bz2)1/2) by using the regression analysis in a power law form. The main results are as follows: (1) the exponent for Bz shows higher consistency than that for sin(θ/2); (2) we never obtain B2 sin4(θ/2) or BT2 sin4(θ/2), which is the IMF dependence expected from the ε parameter; and (3) the ring current injection rate has a very low correlation with the Alfven Mach number, from which the IMF dependence of the Vasyliunas et al. general formula is assumed to arise. On the basis of the above results we conclude that the ε parameter and the Vasyliunas et al. general formula are less appropriate than a function of Bz, and that the energy coupling function between the solar wind and the Earth’s magnetosphere is described better by Bz than by the combination of B (or BT) and sin(θ/2). The above results and conclusions are the same as those obtained by Aoki (2005) through the analysis of the AL index.

References

  1. Allen, J. H. and H. W. Kroehl, Spatial and temporal distributions of magnetic effects of auroral electrojets as derived from AE indices, J. Geophys. Res., 80, 3667–3677, 1975.

    Article  Google Scholar 

  2. Aoki, T., Influence of the dipole tilt angle on the development of auroral electrojets, J. Geomag. Geoelectr., 29, 441–453, 1977.

    Article  Google Scholar 

  3. Aoki, T., On the validity of Akasofu’s ε parameter and of the Vasyliunas et al. general formula for the rate of solar wind-magnetosphere energy input, Earth Planets Space, 57, 131–137, 2005.

    Article  Google Scholar 

  4. Baker, D. N., R. D. Zwickl, S. J. Bame, E. W. Hones, Jr., B. T. Tsurutani, E. J. Smith, and S.-I. Akasofu, An ISEE 3 high time resolution study of interplanetary parameter correlations with magnetospheric activity, J. Geophys. Res., 88, 6230–6242, 1983.

    Article  Google Scholar 

  5. Bargatze, L. F., R. L. McPherron, and D. N. Baker, Solar windmagnetosphere energy input functions, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide and J. A. Slavin, pp. 101–109, Terrapub/ Reidel, Tokyo, 1986.

    Google Scholar 

  6. Burton, R. K., R. L. McPherron, and C. T. Russell, An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204–4214, 1975.

    Article  Google Scholar 

  7. Dessler, A. J. and E. N. Parker, Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 64, 2239–2252, 1959.

    Article  Google Scholar 

  8. Fairfield, D. H. and L. J. Cahill, Jr., Transition region magnetic field and polar magnetic disturbances, J. Geophys. Res., 71, 155–169, 1966.

    Article  Google Scholar 

  9. Feldstein, Y. I., V. Yu. Pisarsky, N.M. Rudneva, and A. Grafe, Ring current simulation in connection with interplanetary space conditions, Planet. Space Sci., 32, 975–984, 1984.

    Article  Google Scholar 

  10. Fenrich, F. R. and J. G. Luhmann, Geomagnetic response to magnetic clouds of different polarity, Geophys. Res. Lett., 25, 2999–3002, 1998.

    Article  Google Scholar 

  11. Gonzalez, W. D., B. T. Tsurutani, A. L. C. Gonzalez, E. J. Smith, F. Tang, and S.-I. Akasofu, Solar wind-magnetosphere coupling during intense magnetic storms (1978–1979), J. Geophys. Res., 94, 8835–8851, 1989.

    Article  Google Scholar 

  12. Gonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. M. Vasyliunas, What is a geomagnetic storm?, J. Geophys. Res., 99, 5771–5792, 1994.

    Article  Google Scholar 

  13. Kamide, Y. and S.-I. Akasofu, Notes on the auroral electrojet indices, Rev. Geophys. Space Phys., 21, 1647–1656, 1983.

    Article  Google Scholar 

  14. Koskinen, H. E. J. and E. I. Tanskanen, Magnetospheric energy budget and the epsilon parameter, J. Geophys. Res., 107(A11), 1415, doi:10.1029/ 2002JA009283, 2002.

    Article  Google Scholar 

  15. Maezawa, K., Statistical study of the dependence of geomagnetic activity on solar wind parameters, in Quantitative Modeling of Magnetospheric Processes, Geophys. Monogr. Ser., vol. 21, edited by W. P. Olson, pp. 436–447, AGU, Washington, D. C., 1979.

    Article  Google Scholar 

  16. Maezawa, K. and T. Murayama, Solar wind velocity effects on the auroral zone magnetic disturbances, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide and J. A. Slavin, pp. 59–83, Terrapub/Reidel, Tokyo, 1986.

    Google Scholar 

  17. Murayama, T., Coupling function between the solar wind and the Dst index, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide and J. A. Slavin, pp. 119–126, Terrapub/Reidel, Tokyo, 1986.

    Google Scholar 

  18. Murayama, T and K. Hakamada, Effects of solar wind parameters on the development of magnetospheric substorms, Planet. Space Sci., 23, 75–91, 1975.

    Article  Google Scholar 

  19. Murayama, T., T. Aoki, H. Nakai, and K. Hakamada, Empirical formula to relate the auroral electrojet intensity with interplanetary parameters, Planet. Space Sci., 28, 803–813, 1980.

    Article  Google Scholar 

  20. Nakai, H., Influence of the transverse component of the interplanetary magnetic field on the size of the auroral oval, J. Geomag. Geoelectr., 39, 501–519, 1987.

    Article  Google Scholar 

  21. Neugebauer, M. and C. W. Synder, Mariner 2 observations of the solar wind, 1, Average properties, J. Geophys. Res., 71, 4469–4484, 1966.

    Article  Google Scholar 

  22. O’Brien, T. P. and R. L. McPherron, An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707–7719, 2000.

    Article  Google Scholar 

  23. O’Brien, T. P. and R. L. McPherron, Seasonal and diurnal variation of Dst dynamics, J. Geophys. Res., 107A11), 1341, doi:10.1029/2002JA009435, 2002.

    Article  Google Scholar 

  24. Perreault, P. and S.-I. Akasofu, A study of geomagnetic storms, Geophys. J. R. Astron. Soc., 54, 547–573, 1978.

    Article  Google Scholar 

  25. Rostoker, G., H.-L. Lam, and W. D. Hume, Response time of the magnetosphere to the interplanetary electric field, Can. J. Phys., 50, 544–547, 1972.

    Article  Google Scholar 

  26. Sckopke, N., A general relation between the energy of trapped particles and the disturbance field near the Earth, J. Geophys. Res., 71, 3125–3130, 1966.

    Article  Google Scholar 

  27. Temerin, M. and X. Li, A new model for the prediction of Dst on the basis of the solar wind, J. Geophys. Res., 107(A12), 1472, doi:10.1029/2001JA007532, 2002.

    Article  Google Scholar 

  28. Vasyliunas, V. M., J. R. Kan, G. L. Siscoe, and S.-I. Akasofu, Scaling relations governing magnetospheric energy transfer, Planet. Space Sci., 30, 359–365, 1982.

    Article  Google Scholar 

  29. Wu, J.-G. and H. Lundstedt, Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks, J. Geophys. Res., 102, 14255–14268, 19

    Article  Google Scholar 

  30. Wu, J.-G. and H. Lundstedt, Neural network modeling of solar windmagnetosphere interaction, J. Geophys. Res., 102, 14457–14466, 1997b.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takao Aoki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aoki, T. Influence of the interplanetary magnetic field on the ring current injection rate. Earth Planet Sp 58, 679–688 (2006). https://doi.org/10.1186/BF03351965

Download citation

Key words

  • Ring current injection rate
  • ε parameter
  • Vasyliunas et al. general formula
  • IMF clock angle
  • Bz