Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

A two-dimensional simulation of thermospheric vertical winds in the vicinity of an auroral arc

Abstract

The observations made by Fabry-Perot interferometers (FPIs), radars, and satellites have indicated that large vertical motion in the polar region is occasionally generated in the thermosphere associated with auroral activities. However, the behavior of the vertical wind is often very complicated, and the cause of the vertical wind has not been explained by auroral heating or by ion-neutral drag alone. It has been pointed out that a background horizontal flow is likely to significantly alter the dynamics of the neutral atmosphere near an auroral arc. Recent observations have also suggested that strong downward motion is generated in the vicinity of an auroral arc. To study the thermospheric dynamics near a local heating region embedded in a large-scale horizontal flow, a two-dimensional numerical simulation of the thermospheric dynamics has been performed. It is found that interaction of local heating and strong horizontal flow could play an important role in generating vertical motion near an auroral arc. The simulation results indicate that for a horizontal wind speed larger than about 300 m/s, a steady wave-like structure of the neutral wind is formed within and downstream of the heated region. For a horizontal wind speed less than about 300 m/s, on the other hand, no significant vertical motion is generated outside the heated region. This process might account for at least some of the observed features of vertical motion within and outside an auroral arc.

References

  1. Abe, T., J. Kurihara, N. Iwagami, S. Nozawa, Y. Ogawa, R. Fujii, H. Hayakawa, and K. Oyama, Dynamics and Energetics in the Lower Thermosphere in Aurora (DELTA)—Japanese sounding rocket campaign-, Earth Planets Space, 58, this issue, 1165–1171, 2006.

    Article  Google Scholar 

  2. Brekke, A. and Y. Kamide, On the relationship between Joule and frictional heating in the polar ionosphere, J. Atmos. Terr. Phys., 58, 139–144, 1996.

    Article  Google Scholar 

  3. Brekke, A., S. Nozawa, and M. Sato, Samples of auroral E-region parameters derived from EISCAT experiments, J. Geomag. Geoelectr., 47, 889–909, 1995.

    Article  Google Scholar 

  4. Burnside, R. G., F. A. Herrero, J. W. Jr. Meriwether, and J. C. G. Walker, Optical observations of thermospheric dynamics at Arecibo, J. Geophys. Res., 86, 5532–5540, 1981.

    Article  Google Scholar 

  5. Conde, M. and P. L. Dyson, Thermospheric vertical winds above Mauson, Antarctica, J. Atmos. Terr. Phys., 57, 589–596, 1995.

    Article  Google Scholar 

  6. Conde, M., J. D. Craven, T. Immel, E. Hoch, H. Stenbaek-Nielsen, T. Hallinan, R. W. Smith, J. Olson, and W. Sun, Assimilated observations of thermospheric winds, the aurora, and ionospheric currents over Alaska, J. Geophys. Res., 106, 10,493–10,508, 2001.

    Article  Google Scholar 

  7. Eastes, R. W., T. L. Killeen, Q. Wu, J. D. Winningham, W. R. Hoegy, L. E. Wharton, and G. R. Carignan, An experimental investigation of thermospheric structure near an auroral arc, J. Geophys. Res., 97, 10,539–10,549, 1992.

    Article  Google Scholar 

  8. Fujiwara, H., S. Maeda, H. Fukunishi, T. J. Fuller-Rowell, and D. S. Evans, Global variations of thermospheric winds and temperatures caused by substorm energy injection, J. Geophys. Res., 101, 225–239, 1996.

    Article  Google Scholar 

  9. Fuller-Rowell, T. J., A Two-dimensional, high-resolution, nested-grid model of the thermosphere 1. Neutral response to an electric field “Spike”, J. Geophys. Res., 89, 2971–2990, 1984.

    Article  Google Scholar 

  10. Fuller-Rowell, T. J., A two-dimensional, high-resolution, nested-grid model of the thermosphere 2. Response of the thermosphere to narrow and broad electrodynamic features, J. Geophys. Res., 90, 6567–6586, 1985.

    Article  Google Scholar 

  11. Goncharenko, L. P., J. E. Salah, J. C. Foster, and C. Huang, Variations in lower thermosphere dynamics at midlatitudes during intense geomagnetic storms, J. Geophys. Res., 109, A04304, doi:10.1029/2003JA010244, 2003.

  12. Hajkowicz, L. A. and R. D. Hunsucker, A simultaneous observation of large-scale periodic TIDs in both hemispheres following an onset of auroral disturbances, Planet. Space Sci., 35, 785–791, 1987.

    Article  Google Scholar 

  13. Hedin, A. E., Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159–1172, 1991.

    Article  Google Scholar 

  14. Innis, J. L. and M. Conde, Characterization of acoustic-gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data, J. Geophys. Res., 107, A12, 1418, doi:10.1029/2002JA009370, 2002.

    Article  Google Scholar 

  15. Ishii, M., Relationship between thermospheric vertical wind and the location of ionospheric current in the polar region, Adv. Polar Upper Atmos. Res., 19, 63–70, 2005.

    Google Scholar 

  16. Ishii, M., M. Conde, R. W. Smith, M. Krynicki, E. Sagawa, and S. Watari, Vertical wind observations with two Fabry-Perot interferometers at Poker Flat, Alaska, J. Geophys. Res., 106, 10,537–10,551, 2001.

    Article  Google Scholar 

  17. Johnson, F. S., W. B. Hanson, R. R. Hodges, W. R. Coley, G. R. Cargnan, and N. W. Spencer, Gravity waves near 300 km over the polar caps, J. Geophys. Res., 100, 23,993–24,002, 1995.

    Article  Google Scholar 

  18. Kato, S., Chapter 2: Acoustic gravity waves (AGW’s), in Dynamics of the Upper Atmosphere, by T. Rikitake, D. Reidel Publishing Company, 1980.

    Google Scholar 

  19. Kato, S., T. Kawakami, and D. St. John, Theory of gravity wave emission from moving sources in the upper atmosphere, J. Atmos. Terr. Phys., 39, 581–588, 1977.

    Article  Google Scholar 

  20. Killeen, T. L., R. A. Heelis, P. B. Hays, N. W. Spencer, and W. B. Hanson, Neutral motions in the polar thermosphere for northward interplanetary magnetic field, Geophys. Res. Lett., 12, 159–162, 1985.

    Article  Google Scholar 

  21. Lyons, L. R. and R. L. Walterscheid, Generation of auroral omega bands by shear instability of the neutral winds, J. Geophys. Res., 90, 12,321–12,329, 1985.

    Article  Google Scholar 

  22. Maeda, S., T. J. Fuller-Rowell, and D. S. Evans, Zonally averaged dynamical and compositional response of the thermosphere to auroral activity during September 18–24, 1984, J. Geophys. Res., 94, 16,869–16,883, 1989.

    Article  Google Scholar 

  23. McCormac, F. G., T. L. Killeen, E. Gombosi, P. B. Hays, and N. W. Spencer, Configuration of the high-latitude thermosphere neutral circulation for IMF By negative and positive, Geophys. Res. Lett., 12, 155–158, 1985.

    Article  Google Scholar 

  24. Oyama, S., S. Nozawa, S. Maeda, Y. Murayama, R. Fujii, and H. Shinagawa, Field-aligned ion motions in the polar E-F transition region: Mean characteristics, J. Geophys. Res., 108, doi:10.1029/2003JA009830, 2003.

  25. Oyama, S., B. J. Watkins, S. Nozawa, S. Maeda, and M. Conde, Vertical ion motions observed with incoherent-scatter radars in the polar lower ionosphere, J. Geophys. Res., 110, doi:10.1029/2004JA010705, 2005.

  26. Parish, H. F., R. L. Walterscheid, P. W. Jones, and L. R. Lyons, Simulations of the thermospheric response to the diffuse aurora using a threedimensional high-resolution model, J. Geophys. Res., 108, A4, 1140, doi:10.1029/2002JA009610, 2003.

    Article  Google Scholar 

  27. Price, G. D., R.W. Smith, and G. Hernandez, Simultaneous measurements of large vertical winds in the upper and lower thermosphere, J. Atmos. Terr. Phys., 57, 631–643, 1995.

    Article  Google Scholar 

  28. Rees, D., R. W. Smith, P. J. Charleton, F. G. McCormac, N. Lloyd, and A. Steen, The generation of vertical thermospheric winds and gravity waves at auroral latitudes I. Observations of vertical winds, Planet. Space Sci., 32, 667–684, 1984.

    Article  Google Scholar 

  29. Rees, D., T. J. Fuller-Rowell, R. Gordon, M. F. Smith, N. C. Maynard, J. P. Heppner, N.W. Spencer, and L. Wharton, A theoretical and empirical study of the response of the high latitude thermosphere to the sense of the ‘Y’ component of the interplanetary magnetic field, Planet. Space Sci., 34, 1–40, 1986.

    Article  Google Scholar 

  30. Richmond, A. D. and S. Matsushita, Thermospheric response to a magnetic substorm, J. Geophys. Res., 80, 2839–2850, 1975.

    Article  Google Scholar 

  31. Schunk, R. W. and A. F. Nagy, Ionosphere of the terrestrial planets, Rev. Geophys. Space Phys., 18, 813–852, 1980.

    Article  Google Scholar 

  32. Shinagawa, H., S. Oyama, S. Nozawa, S. C. Buchert, R. Fujii, and M. Ishii, Thermospheric and ionospheric dynamics in the auroral region, Adv. Space Res., 31(4), 951–956, 2003.

    Article  Google Scholar 

  33. Sica, R. J., M. H. Rees, J. Romick, G. Hernandez, and R. G. Roble, Auroral zone thermospheric dynamics 1. Averages, J. Geophys. Res., 91, 3231–3244, 1986.

    Article  Google Scholar 

  34. Smith, R. W., The global-scale effect of small-scale thermospheric disturbances, J. Atmos. Solar-Terr. Phys., 62, 1623–1628, 2000.

    Article  Google Scholar 

  35. Smith, R.W. and G. Hernandez, Vertical winds in the thermosphere within the polar cap, J. Atmos. Terr. Phys., 57, 611–620, 1995.

    Article  Google Scholar 

  36. Sojka, J. J., R. W. Schunk, M. David, J. L. Innis, P. A. Greet, and P. L. Dyson, A theoretical model study of F-region response to high latitude neutral wind upwelling events, J. Atmos. Sol.-Terr. Phys., 63, 1571–1584, 2001.

    Article  Google Scholar 

  37. Spencer, N. W., L. E. Wharton, H. B. Niemann, A. E. Hedin, G. R. Carignan, and J. C. Maurer, The Dynamics Explorer wind and temperature spectrometer, Space Sci. Inst., 5, 417–428, 1981.

    Google Scholar 

  38. Sun, Z. P., R. P. Turco, R. L. Walterscheid, S. V. Venkateswaran, and P. W. Jones, Thermospheric response to morningside diffuse aurora: High-resolution three-dimensional simulations, J. Geophys. Res., 100, 23,779–23,793, 1995.

    Article  Google Scholar 

  39. Takewaki, H., A. Nishiguchi, and T. Yabe, Cubic Interpolated Pseudoparticle Method (CIP) for solving hyperbolic type equations, J. Comput. Phys., 61, 261–268, 1985.

    Article  Google Scholar 

  40. Thayer, J. P., T. L. Killeen, F. G. McCormac, C. R. Tschan, J.-J. Ponthieu, and N. W. Spencer, Thermospheric neutral wind signatures dependent on the east-west component of the interplanetary magnetic field for northern and southern hemispheres as measured from Dynamics Explorer-2, Ann. Geophys., 5A, 363–368, 1987.

    Google Scholar 

  41. Walterscheid, R. L. and L. R. Lyons, The neutral E region zonal winds during intense postmidnight diffuse aurora: Response to observed particle fluxes, J. Geophys. Res., 94, 3703–3712, 1989.

    Article  Google Scholar 

  42. Walterscheid, R. L. and L. R. Lyons, The neutral circulation in the vicinity of a stable auroral arc, J. Geophys. Res., 97, 19,489–19,499, 1992.

    Article  Google Scholar 

  43. Walterscheid, R. L., L. R. Lyons, and K. E. Taylor, The perturbed neutral circulation in the vicinity of a symmetric stable auroral arc, J. Geophys. Res., 90, 12,235–12,248, 1985.

    Article  Google Scholar 

  44. Yabe, T. and P. Y. Wang, Unified numerical procedure for compressible and incompressible fluid, J. Phys. Soc. Japan, 60, 2105–2108, 1991.

    Article  Google Scholar 

  45. Yabe, T., T. Ishikawa, P. Y. Wang, T. Aoki, Y. Kadota, and F. Ikeda, A universal solver for hyperbolic equations by cubic-polynomial interpolation II. Two- and three-dimensional solvers, Comput. Phys. Commun., 66, 233–242, 1991.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Shinagawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shinagawa, H., Oyama, S. A two-dimensional simulation of thermospheric vertical winds in the vicinity of an auroral arc. Earth Planet Sp 58, 1173–1181 (2006). https://doi.org/10.1186/BF03352007

Download citation

Key words

  • Thermosphere
  • vertical wind
  • auroral heating
  • simulation